Maple-assisted proof of empirical generating function for A188270

Robert Israel

February 7, 2019
For $n \geq 1, a(n)$ is the coefficient of y^{0} in the Laurent series of the coefficient of x^{n} in

$$
\begin{align*}
& G(x, y)=\prod_{j=-2}^{2}\left(\frac{1}{1-x y^{3}}\right) \\
& >G:=\prod_{j=-2}^{2}\left(\frac{1}{1-x y^{3}}\right) \\
& G:=\frac{1}{\left(1-\frac{x}{y^{8}}\right)\left(1-\frac{x}{y}\right)(1-x)(-x y+1)\left(-x y^{8}+1\right)} \tag{1}
\end{align*}
$$

It will be convenient for this analysis to include the term $a(0)=1$. Here is the partial fraction expansion of $G(x, y)$ with respect to x :

$$
\left[\begin{array}{l}
>\frac{\text { convert (G, parfrac, x) }}{y^{8}} \begin{array}{l}
\left(y^{8}-1\right)^{2}(y-1)^{2}(-1+x) \\
\\
\quad+\frac{y^{8}}{\left(y^{7}-1\right)(y-1)\left(y^{2}-1\right)\left(y^{9}-1\right)(-y+x)} \\
\quad+\frac{y^{8}}{\left(y^{9}-1\right)\left(y^{2}-1\right)(y-1)\left(y^{7}-1\right)(x y-1)} \\
\\
-\frac{\left.y^{8}-1\right)\left(y^{16}-1\right)\left(-y^{8}+x\right)}{\left(y^{16}-1\right)\left(y^{9}-1\right)\left(y^{8}-1\right)\left(y^{7}-1\right)\left(x y^{8}-1\right)}
\end{array}
\end{array}\right.
$$

The terms with $-1+x, x y-1$ or $x y^{8}-1$ in the denominator, when expanded in powers of x and then powers of y, will contain only positive powers of y. The terms we want are these:
> $G_{1}:=o p(2,(\mathbf{2}))$

$$
\begin{equation*}
G_{1}:=-\frac{y^{8}}{\left(y^{7}-1\right)\left(y^{8}-1\right)\left(y^{9}-1\right)\left(y^{16}-1\right)\left(-y^{8}+x\right)} \tag{3}
\end{equation*}
$$

$$
\left[\begin{array}{l}
>G_{2}:=o p(3,(\mathbf{2})) \\
\qquad G_{2}:=\frac{y^{8}}{\left(y^{7}-1\right)(y-1)\left(y^{2}-1\right)\left(y^{9}-1\right)(-y+x)} \tag{4}
\end{array}\right.
$$

The series for G_{1} and G_{2} in powers of x are

$$
\left\lceil>T_{1}:=\operatorname{convert}\left(G_{1}, F P S, x\right)\right.
$$

$$
\begin{equation*}
T_{1}:=\sum_{k=0}^{\infty} \frac{\left(\frac{1}{y^{8}}\right)^{k} x^{k}}{\left(y^{7}-1\right)\left(y^{8}-1\right)\left(y^{9}-1\right)\left(y^{16}-1\right)} \tag{5}
\end{equation*}
$$

$>T_{2}:=\operatorname{convert}\left(G_{2}, F P S, x\right)$

$$
\begin{equation*}
T_{2}:=\sum_{k=0}^{\infty}\left(-\frac{y^{7}\left(\frac{1}{y}\right)^{k} x^{k}}{\left(y^{7}-1\right)(y-1)\left(y^{2}-1\right)\left(y^{9}-1\right)}\right) \tag{6}
\end{equation*}
$$

Thus $a(n)=b(8 n)+c(n)$ where $b(n)$ and $c(n)$ have ordinary generating functions $B(y)$ and $C(y)$ as follows:
$\left[>B:=\operatorname{eval}\left(o p\left(1, T_{1}\right), k=0\right)\right.$

$$
\begin{equation*}
B:=\frac{1}{\left(y^{7}-1\right)\left(y^{8}-1\right)\left(y^{9}-1\right)\left(y^{16}-1\right)} \tag{7}
\end{equation*}
$$

$\stackrel{>}{>} C:=\operatorname{eval}\left(o p\left(1, T_{2}\right), k=0\right)$

$$
\begin{equation*}
C:=-\frac{y^{7}}{\left(y^{7}-1\right)(y-1)\left(y^{2}-1\right)\left(y^{9}-1\right)} \tag{8}
\end{equation*}
$$

Note that if $g(z)=\sum_{n=0}^{\infty} b(n) y^{n}, \sum_{n=0}^{\infty} b(8 n) y^{8 n}=\frac{1}{8} \sum_{j=0}^{7} g\left(\omega^{j} y\right)$ where ω is a primitive 8 'th root of Lunity, i.e. a 4 'th root of -1 . So here is the generating function of $b(8 n)$:
$>B 8:=\operatorname{eval}\left(\right.$ simplify $\left.\left(\frac{1}{8} \cdot \operatorname{add}\left(\operatorname{eval}\left(B, y=\omega^{j} y\right), j=0 . .7\right),\left\{\omega^{4}=-1\right\}\right), y=y^{\frac{1}{8}}\right)$
$B 8:=\frac{\left(y^{2}+1\right)\left(y^{4}+1\right)\left(y^{8}+1\right)}{y^{19}-y^{18}-y^{17}+y^{16}-y^{12}+y^{11}+y^{8}-y^{7}+y^{3}-y^{2}-y+1}$
[Adding this to $C(y)$ gives us the generating function of $a(n)$:
$>\operatorname{normal}(C+B 8)$

$$
\begin{equation*}
\frac{y^{8}-y^{7}+y^{6}-y^{5}+y^{4}-y^{3}+y^{2}-y+1}{y^{13}-2 y^{12}+2 y^{10}-y^{9}-y^{4}+2 y^{3}-2 y+1} \tag{10}
\end{equation*}
$$

[Here was the "empirical" generating function, which was for the sequence with offset 1 :
$>$ empirical $:=x^{*}\left(1+x-3 *^{\wedge} x^{\wedge} 2+2 *^{*} x^{\wedge} 3-x^{\wedge} 4+x^{\wedge} 5-x^{\wedge} 6+x^{\wedge} 7+x^{\wedge} 8-2 * x^{\wedge} 9+2\right.$

$$
\left.* x^{\wedge} 11-x^{\wedge} 12\right) /\left((1-x)^{\wedge} 4 *(1+x) *\left(1+x+x^{\wedge} 2\right) *\left(1+x^{\wedge} 3+x^{\wedge} 6\right)\right)
$$

$$
\begin{equation*}
\text { empirical }:=\frac{x\left(-x^{12}+2 x^{11}-2 x^{9}+x^{8}+x^{7}-x^{6}+x^{5}-x^{4}+2 x^{3}-3 x^{2}+x+1\right)}{(1-x)^{4}(1+x)\left(x^{2}+x+1\right)\left(x^{6}+x^{3}+1\right)} \tag{11}
\end{equation*}
$$

[The difference between these is our term $a(0)=1$.
$>\operatorname{normal}(C+B 8-1-\operatorname{subs}(x=y$, empirical $))$
[This completes the proof.

