OFFSET
1,1
COMMENTS
Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states: every even integer greater than 2 can be expressed as the sum of two primes. Because there exist several decompositions (see A002375), this sequence gives k for a second decomposition of prime(k) + prime(k+1) that gives prime(k+2) + prime(k-n).
a(n) > pi(2*10^12) for n >= 29. - Donovan Johnson, Apr 06 2011
EXAMPLE
a(2) = 8 because prime(8) + prime(9) = prime(10) + prime(6); i.e., 19 + 23 = 29 + 13.
MAPLE
A188268 := proc(n) local k , pk; k := 1+n ; pk := Array([ithprime(k), ithprime(k+1), ithprime(k+2), ithprime(k-n)]) ; for k from 1+n do if pk[1]+pk[2]-pk[3] = pk[4] then return k ; end if; pk[1] := pk[2] ; pk[2] := pk[3] ; pk[3] := nextprime(pk[2]) ; pk[4] := nextprime(pk[4]) ; end do; end proc: # R. J. Mathar, Mar 31 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Mar 30 2011
EXTENSIONS
a(23)-a(28) from Donovan Johnson, Apr 06 2011
STATUS
approved