login
A188211
T(n,k)=Number of nondecreasing arrangements of n numbers in -(n+k-2)..(n+k-2) with sum zero
11
1, 1, 2, 1, 3, 5, 1, 4, 8, 18, 1, 5, 13, 33, 73, 1, 6, 18, 55, 141, 338, 1, 7, 25, 86, 252, 676, 1656, 1, 8, 32, 126, 414, 1242, 3370, 8512, 1, 9, 41, 177, 649, 2137, 6375, 17575, 45207, 1, 10, 50, 241, 967, 3486, 11322, 33885, 94257, 246448, 1, 11, 61, 318, 1394, 5444
OFFSET
1,3
COMMENTS
Table starts
......1......1.......1.......1.......1.......1........1........1........1
......2......3.......4.......5.......6.......7........8........9.......10
......5......8......13......18......25......32.......41.......50.......61
.....18.....33......55......86.....126.....177......241......318......410
.....73....141.....252.....414.....649.....967.....1394.....1944.....2649
....338....676....1242....2137....3486....5444.....8196....11963....17002
...1656...3370....6375...11322...19138...30982....48417....73316...108108
...8512..17575...33885...61731..107233..178870...288100...450096...684572
..45207..94257..184717..343363..610358.1043534..1724882..2767118..4323349
.246448.517971.1028172.1943488.3521260.6147894.10388788.17052653.27273240
LINKS
EXAMPLE
Some solutions for n=5 k=3
.-5...-5...-4...-4...-6...-3...-6...-4...-2...-6...-2...-6...-4...-5...-5...-4
.-2...-1...-4...-2...-5...-3...-1...-3...-1...-6...-1...-1...-3...-4...-3...-4
..0....0...-1...-2...-1...-1....0...-1...-1....1...-1....0....1...-1....0....1
..1....0....3....3....6....2....2....3....1....5....0....1....1....5....4....3
..6....6....6....5....6....5....5....5....3....6....4....6....5....5....4....4
CROSSREFS
Column 1 is A039744
Column 2 is A109655
Row 3 is A000982(n+2)
Row 5 is A188183(n+2)
Row 7 is A188185(n+3)
Sequence in context: A117584 A199847 A047997 * A175009 A297395 A297595
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 24 2011
STATUS
approved