login
A188192
[nr]-[kr]-[nr-kr], where r=sqrt(5), k=3, [ ]=floor.
3
1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1
OFFSET
1
COMMENTS
See A188014.
FORMULA
a(n)=[nr]-[3r]-[nr-3r], where r=sqrt(5).
MATHEMATICA
r=5^(1/2)); k=3;
t=Table[Floor[n*r]-Floor[(n-k)*r]-Floor[k*r], {n, 1, 220}] (*A188192*)
Flatten[Position[t, 0]] (* to be determined Mar 24 *)
Flatten[Position[t, 1]] (* to be determined Mar 24 *)
CROSSREFS
Cf. A188014, (more to be determined Mar 24).
Sequence in context: A281114 A286749 A359374 * A068432 A134668 A309970
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 23 2011
STATUS
approved