login
A188186
Number of strictly increasing arrangements of 8 numbers in -(n+6)..(n+6) with sum zero
1
289, 910, 2430, 5744, 12346, 24591, 46029, 81805, 139143, 227930, 361384, 556834, 836618, 1229093, 1769773, 2502617, 3481445, 4771508, 6451232, 8614108, 11370764, 14851235, 19207395, 24615603, 31279561, 39433366, 49344790, 61318804, 75701312
OFFSET
1,1
COMMENTS
Row 8 of A188181
LINKS
FORMULA
Empirical: a(n)=3*a(n-1)-2*a(n-2)-3*a(n-4)+4*a(n-5)-3*a(n-8)+3*a(n-9)-a(n-11)-a(n-12)+3*a(n-14)-3*a(n-15)+4*a(n-18)-3*a(n-19)-2*a(n-21)+3*a(n-22)-a(n-23).
Empirical: G.f. -x*(-289 -43*x -278*x^2 -274*x^3 -841*x^4 -615*x^5 -598*x^6 -412*x^7 -715*x^8 -363*x^9 -163*x^10 -72*x^11 -98*x^12 -200*x^13 +217*x^14 -5*x^15 -49*x^16 -253*x^17 +221*x^18 +23*x^19 +108*x^20 -206*x^21 +73*x^22) / ( (1+x) *(x^4+x^3+x^2+x+1) *(x^6+x^5+x^4+x^3+x^2+x+1) *(1+x+x^2)^2 *(x-1)^8 ). - R. J. Mathar, Mar 26 2011
EXAMPLE
Some solutions for n=5
.-9..-10..-10...-8..-11...-8...-9..-11...-9..-11..-11...-9..-11..-10..-10...-9
.-8...-8...-9...-7...-3...-5...-8..-10...-8...-7...-5...-7...-4...-9...-9...-7
.-5...-4...-7...-6...-2...-4...-5...-2...-6...-6...-4...-5...-3...-7...-7...-4
.-1....1....0...-2...-1...-3...-4....1...-1...-3...-3...-2...-2...-1....0...-1
..1....2....2....0....1....0...-2....2....3....2....0....0....2....4....4....0
..3....5....6....5....3....5....7....3....4....6....4....3....5....5....5....2
..9....6....8....7....5....6...10....6....7....9....8....9....6....7....6....9
.10....8...10...11....8....9...11...11...10...10...11...11....7...11...11...10
CROSSREFS
Sequence in context: A157990 A261111 A218766 * A112077 A152934 A332737
KEYWORD
nonn
AUTHOR
R. H. Hardin Mar 23 2011
STATUS
approved