login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188183 Number of strictly increasing arrangements of 5 numbers in -(n+3)..(n+3) with sum zero 4
12, 32, 73, 141, 252, 414, 649, 967, 1394, 1944, 2649, 3523, 4604, 5910, 7483, 9343, 11538, 14090, 17053, 20451, 24342, 28754, 33751, 39361, 45654, 52662, 60459, 69079, 78602, 89064, 100551, 113101, 126804, 141702, 157891, 175413, 194370, 214808 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Row 5 of A188181

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..200

FORMULA

Empirical: a(n)=2*a(n-1)-a(n-3)-2*a(n-5)+2*a(n-6)+a(n-8)-2*a(n-10)+a(n-11).

Empirical: a(n) = 427*n^2/144 +155*n/32 +5501/1728+23*n^4/288 +115*n^3/144 -3*(-1)^n*n/32-15*(-1)^n/64 +A057077(n+1)/8 -2*A061347(n+1)/27; g.f.  -x*(12 +8*x +9*x^2 +7*x^3 +2*x^4 +7*x^5 +2*x^6 +3*x^7 -2*x^8 -5*x^9 +3*x^10) / ( (x^2+1) *(1+x+x^2) *(1+x)^2 *(x-1)^5 ). - R. J. Mathar, Mar 26 2011

EXAMPLE

Some solutions for n=5

.-5...-8...-7...-8...-6...-4...-8...-6...-8...-5...-8...-7...-6...-6...-8...-7

.-3...-3...-4...-6...-2...-3...-7...-5...-2...-3...-2...-4...-5...-5...-1...-6

.-1...-2....0....0...-1...-1....4...-2....2...-1....1...-2....2...-3....1....1

..3....5....4....6....2....0....5....6....3....1....3....6....3....6....3....4

..6....8....7....8....7....8....6....7....5....8....6....7....6....8....5....8

CROSSREFS

Sequence in context: A134582 A177721 A081268 * A183682 A243027 A242543

Adjacent sequences:  A188180 A188181 A188182 * A188184 A188185 A188186

KEYWORD

nonn

AUTHOR

R. H. Hardin Mar 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 23 01:23 EDT 2017. Contains 283901 sequences.