This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A188160 For an unordered partition of n with k parts, remove 1 from each part and append the number k to get a new partition until a partition is repeated. a(n) gives the maximum steps to reach a period considering all unordered partitions of n. 3
 0, 1, 2, 4, 5, 6, 7, 8, 10, 12, 12, 12, 13, 18, 20, 20, 17, 18, 21, 28, 30, 30, 24, 24, 25, 32, 40, 42, 42, 35, 31, 32, 36, 45, 54, 56, 56, 48, 40, 40, 41, 50, 60, 70, 72, 72, 63, 54, 49, 50, 55, 66, 77, 88, 90, 90, 80, 70, 60, 60, 61 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Alternatively, if one iteratively removes the largest part z(1) and adds 1 to the next z(1) parts to get a new partition until a partition recurs, one gets the same maximum number of steps to reach a period. The two shuffling operations are isomorphic for unordered partitions. The two operations have the same length and number of periods for ordered and unordered partitions. The steps count the operations including any pre-periodic part up to the end of first period, that is, the number of distinct partitions without including the first return. REFERENCES R. Baumann LOG IN, 4 (1987) Halder, Heise Einführung in Kombinatorik, Hanser Verlag (1976) 75 ff. LINKS Ethan Akin, Morton Davis, Bulgarian solitaire, Am. Math. Monthly 92 (4) (1985) 237-250 J. Brandt, Cycles of partitions, Proc. Am. Math. Soc. 85 (3) (1982) 483-486 FORMULA a((k^2+k-2)/2-j) = k^2-k-2-(k+1)*j with 0<=j<=(k-4)/2  and 4<=k. a((k^2+k+2)/2+j) = k^2-k-k*j with 0<=j<=(k-4)/2 and 4<=k, a((k^2+2*k-(k mod 2))/2+j) = (k^2+2*k-(k mod 2))/2+j  with 0 <= j <= 1 and 2 <= k. a(T(k)) = 2*T(k-1) = k^2-k with 1 <= k for the triangular numbers T(k)=A000217(k). EXAMPLE For k=6 and 0 <= j <= 1: a(19)=21;  a(20)=28;  a(21)=30;  a(22)=30;  a(23)=24;  a(24)=24;  a(25)=25. For n=4: (1+1+1+1)->(4)->(3+1)->(2+2)->(2+1+1)--> a(4)=4. For n=5: (1+1+1+1+1)->(5)->(4+1)->(3+2)->(2+2+1)->(3+1+1)-->a(5)=5. MAPLE A188160 := proc(n)         local k, j, T ;         if n <= 2 then                 return n-1 ;         end if;         for k from 0 do                 T := k*(k+1) /2 ;                 if n = T and k >= 1 then                         return k*(k-1) ;                 end if;                 if k>=4 then                         j := T-1-n ;                         if j>= 0 and j <= (k-4)/2 then                                 return k^2-k-2-(k+1)*j ;                         end if;                         j := n-T-1 ;                         if j>= 0 and j <= (k-4)/2 then                                 return k^2-k-k*j ;                         end if;                 end if;                 if k >= 2 then                         j := n-(k^2+2*k-(k mod 2))/2 ;                         if j>=0 and j <= 1 then                                 return (k^2+2*k-(k mod 2))/2+j                         end if;                 end if;         end do:         return -1 ; end proc: # R. J. Mathar, Apr 22 2011 CROSSREFS Cf. A185700, A177922, A184996, A037306. Sequence in context: A285432 A039079 A260375 * A047571 A190237 A190225 Adjacent sequences:  A188157 A188158 A188159 * A188161 A188162 A188163 KEYWORD nonn AUTHOR Paul Weisenhorn, Mar 28 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 03:06 EST 2019. Contains 320364 sequences. (Running on oeis4.)