This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A188128 Expansion of (4-6*x-6*x^2+x^3)/((1+x)*(1-3*x+x^3)). 1
 4, 2, 10, 23, 70, 197, 571, 1640, 4726, 13604, 39175, 112796, 324787, 935183, 2692756, 7753478, 22325254, 64283003, 185095534, 532961345, 1534601035, 4418707568, 12723161362, 36634883048, 105485941579, 303734663372, 874569107071 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Let A_{9,3} = [0,0,0,1; 0,0,1,1; 0,1,1,1; 1,1,1,1], a unit-primitive matrix (see [Jeffery]). Then a(n) = Trace([A_{9,3}]^n). LINKS L. E. Jeffery, Unit-primitive matrices Index entries for linear recurrences with constant coefficients, signature (2, 3, -1, -1). FORMULA G.f.: (4-6*x-6*x^2+x^3)/((1+x)*(1-3*x+x^3)). a(n) = 2*a(n-1)+3*a(n-2)-a(n-3)-a(n-4), {a(m)}={4,2,10,23}, m=0,1,2,3. a(n) = Sum_{k=1..4} ((x_k)^3-2*(x_k))^n, x_k=2*(-1)^(k-1)*cos(k*Pi/9). a(n) = (-1)^n+(1+2*cos(Pi/9))^n+(1-cos(Pi/9)+sqrt(3)*sin(Pi/9))^n + (1-cos(Pi/9)-sqrt(3)*sin(Pi/9))^n. - L. Edson Jeffery, Dec 15 2011 a(n) = (-1)^n + 3*A147704(n). - R. J. Mathar, Oct 08 2016 MATHEMATICA CoefficientList[Series[(4-6x-6x^2+x^3)/((1+x)(1-3x+x^3)), {x, 0, 30}], x] (* or *) LinearRecurrence[{2, 3, -1, -1}, {4, 2, 10, 23}, 30] (* Harvey P. Dale, Apr 22 2011 *) CROSSREFS Sequence in context: A128781 A135440 A215500 * A091484 A163544 A191728 Adjacent sequences:  A188125 A188126 A188127 * A188129 A188130 A188131 KEYWORD nonn,easy AUTHOR L. Edson Jeffery, Apr 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 22:27 EST 2019. Contains 329880 sequences. (Running on oeis4.)