login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188128 Expansion of (4-6*x-6*x^2+x^3)/((1+x)*(1-3*x+x^3)). 1
4, 2, 10, 23, 70, 197, 571, 1640, 4726, 13604, 39175, 112796, 324787, 935183, 2692756, 7753478, 22325254, 64283003, 185095534, 532961345, 1534601035, 4418707568, 12723161362, 36634883048, 105485941579, 303734663372, 874569107071 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Let A_{9,3} = [0,0,0,1; 0,0,1,1; 0,1,1,1; 1,1,1,1], a unit-primitive matrix (see [Jeffery]). Then a(n) = Trace([A_{9,3}]^n).

LINKS

Table of n, a(n) for n=0..26.

L. E. Jeffery, Unit-primitive matrices

Index entries for linear recurrences with constant coefficients, signature (2, 3, -1, -1).

FORMULA

G.f.: (4-6*x-6*x^2+x^3)/((1+x)*(1-3*x+x^3)).

a(n) = 2*a(n-1)+3*a(n-2)-a(n-3)-a(n-4), {a(m)}={4,2,10,23}, m=0,1,2,3.

a(n) = Sum_{k=1..4} ((x_k)^3-2*(x_k))^n, x_k=2*(-1)^(k-1)*cos(k*Pi/9).

a(n) = (-1)^n+(1+2*cos(Pi/9))^n+(1-cos(Pi/9)+sqrt(3)*sin(Pi/9))^n + (1-cos(Pi/9)-sqrt(3)*sin(Pi/9))^n. - L. Edson Jeffery, Dec 15 2011

a(n) = (-1)^n + 3*A147704(n). - R. J. Mathar, Oct 08 2016

MATHEMATICA

CoefficientList[Series[(4-6x-6x^2+x^3)/((1+x)(1-3x+x^3)), {x, 0, 30}], x] (* or *) LinearRecurrence[{2, 3, -1, -1}, {4, 2, 10, 23}, 30] (* Harvey P. Dale, Apr 22 2011 *)

CROSSREFS

Sequence in context: A128781 A135440 A215500 * A091484 A163544 A191728

Adjacent sequences:  A188125 A188126 A188127 * A188129 A188130 A188131

KEYWORD

nonn,easy

AUTHOR

L. Edson Jeffery, Apr 05 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 22:27 EST 2019. Contains 329880 sequences. (Running on oeis4.)