This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A188066 Triangle read by rows: Bell polynomial of the second kind B(n,k) with argument vector (7,42,210,840,2520,5040,5040). 2

%I

%S 7,42,49,210,882,343,840,11172,12348,2401,2520,117600,288120,144060,

%T 16807,5040,1076040,5433120,5330220,1512630,117649,5040,8643600,

%U 89029080,155296680,81177810,14823774,823543,0,60540480,1306912320,3884433840,3360055440,1087076760,138355224,5764801

%N Triangle read by rows: Bell polynomial of the second kind B(n,k) with argument vector (7,42,210,840,2520,5040,5040).

%C From the explicit write-up of the Bell polynomials we have B(n,k)(7*x^6,42*x^5,210*x^4,840*x^3,2520*x^2,5040*x,5040) = B(n,k)(7,42,..,5040)*x^(7*k-n) for a more general set of arguments.

%H M. Abbas, S. Bouroubi, <a href="http://dx.doi.org/10.1016/j.disc.2004.08.023">On new identities for Bell's polynomials</a>, Disc. Math 293. (1-3) (2005) 5-10

%H Vladimir Kruchinin, <a href="http://arxiv.org/abs/1104.5065">Derivation of Bell Polynomials of the Second Kind</a>, arXiv:1104.5065

%H John Riordan, <a href="http://dx.doi.org/10.1090/S0002-9904-1946-08621-8">Derivatives of composite functions</a>, Bull. Am. Math. Soc. 52 (1946) 664

%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/BellPolynomial.html">Bell Polynomial</a>, MathWorld.

%F B(n,k)=(n!/k!)*sum_{j=0..k} binomial(k,j) *binomial(7*j,n) *(-1)^(k-j).

%e 7;

%e 42,49;

%e 210,882,343;

%e 840,11172,12348,2401;

%e 2520,117600,288120,144060,16807;

%e 5040,1076040,5433120,5330220,1512630,117649;

%p A188066 := proc(n,k) n!/k!*add( binomial(k,j)*binomial(7*j,n)*(-1)^(k-j),j=0..k) ; end proc:

%p seq(seq(A188066(n,k),k=1..n),n=1..5) ; # R. J. Mathar, Apr 08 2011

%t b[n_, k_] := n!/k!*Sum[ Binomial[k, j]*Binomial[7*j, n]*(-1)^(k - j), {j, 0, k}]; Table[b[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Feb 21 2013, translated from Maxima *)

%o (Maxima)

%o B(n,k):=n!/k!*x^(7*k-n)*sum(binomial(k,j)*binomial(7*j,n)*(-1)^(k-j),j,0,k);

%Y Cf. A188062, A068424 (row 7).

%K nonn,tabl

%O 1,1

%A _Vladimir Kruchinin_, Mar 24 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .