OFFSET
1,1
COMMENTS
If Fibonacci(n) (mod n) = 1, then we assume that k=1 (even though Fibonacci(2) also equals 1). Subsequence of A182625.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..2000
EXAMPLE
14 is in this sequence because fib(14)=377 is congruent to 13 (mod 14), 13=fib(7), and 7 divides 14.
MATHEMATICA
nn = 13; f = Table[Fibonacci[n], {n, nn}]; okQ[n_] := Module[{pos = Position[f, Mod[Fibonacci[n], n]]}, pos != {} && Mod[n, pos[[1, 1]]] == 0]; Select[Range[f[[-1]]], okQ] (* T. D. Noe, Apr 04 2011 *)
PROG
(PARI) ok(n)={my(m=fibonacci(n)%n); fordiv(n, k, my(t=fibonacci(k)); if(t>=m, return(t==m))); 0} \\ Andrew Howroyd, Feb 25 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Carmine Suriano, Mar 30 2011
STATUS
approved