login
A187946
[nr+kr]-[nr]-[kr], where r=(1+sqrt(5))/2, k=5, [ ]=floor.
4
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
OFFSET
1
COMMENTS
See A187950.
FORMULA
a(n)=[nr+5r]-[nr]-[5r], where r=(1+sqrt(5))/2.
MATHEMATICA
r=(1+5^(1/2))/2;
seqA=Table[Floor[(n+5)r]-Floor[n*r]-8, {n, 1, 220}] (* A187946 *)
Flatten[Position[seqA, 0] ] (* A187947 *)
Flatten[Position[seqA, 1] ] (* A134862 *)
PROG
(Python)
from __future__ import division
from gmpy2 import isqrt
def A187946(n):
return int((isqrt(5*(n+5)**2)+n+1)//2 -(isqrt(5*n**2)+n)//2 - 6) # Chai Wah Wu, Oct 08 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 16 2011
STATUS
approved