login
A187880
Number of n X n matrices over GF(2) that can be used as a kernel to construct a polar code. That is, the number of matrices for which channel polarization occurs.
2
0, 2, 120, 18624, 9876480, 20135116800, 163839423283200, 5348052945894113280, 699612285096273924587520, 366440137172271078986848665600, 768105432116827516249785005978419200, 6441762292785726797799215491828242028953600
OFFSET
1,2
COMMENTS
An n X n matrix is polarizing if it is non-singular, and there is no permutation of its columns that results in an upper-triangular matrix.
REFERENCES
S. B. Korada, E. Sasoglu and R. Urbanke, Polar Codes: Characterization of Exponent, Bounds, and Constructions, IEEE Transactions on Information Theory, 56 (2010), 6253-6264
FORMULA
a(n) = Product_{i=0..n-1} (2^n - 2^i) - n! * 2^(n*(n - 1)/2).
MATHEMATICA
a[n_]:=Product[2^n - 2^i, {i, 0, n - 1}] - n!*2^(n*(n - 1)/2); Array[a, 10]
CROSSREFS
Sequence in context: A362459 A077540 A272180 * A331500 A024343 A100043
KEYWORD
nonn,easy
AUTHOR
Ido Tal, Mar 14 2011
STATUS
approved