This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A187870 Numerator of the coefficient of x^(2n) in the expansion of 1/x^4 - 1/(3*x^2) - 1/(x^3*arctanh(x)). 3
 4, 44, 428, 10196, 10719068, 25865068, 5472607916, 74185965772, 264698472181028, 2290048394728148, 19435959308462817284, 2753151578548809148, 20586893910854623222436, 134344844535611780572028924 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Let f(x) = 1/x^4 - 1/(3*x^2) - 1/(x^3*arctanh(x)) = Sum_{n>=0} r(n)*x^(2n), then a(n) is the numerator of r(n), and r(n) is also the moment of order n for the density rho(x) = 2*sqrt(x)/(4*(arctanh(sqrt(x)))^2 + Pi^2) over the interval [0,1]. r(n) can also be evaluated as (-1)^(n+1)*det(An) with An the square matrix of order n+2 defined by: if j <= i A[i,j] = 1/(2*i-2*j+3), A[i,i+1]=1, if j > i+1 A[i,j]=0. A very similar sequence of numerators 1, 1, 4, 44, 428, 10196, ... (from there on apparently the same as here) is constructed from the fractions c(0)=-1 and c(n) = Sum_{i=0..n-1} c(i)/(2n-2i+1), which is c(0)=-1, c(1)=1/3, c(2)=4/45, c(3)= 44/945, etc. The recurrence is designed to ensure that Sum_{i=0..n} c(i)/(2n-2i+1) = 0. - Paul Curtz, Sep 15 2011 Prepending 1 to the data gives the (-1)^n times the numerator of the odd powers in the expansion of 1/arctan(x). - Peter Luschny, Oct 04 2014 LINKS MAPLE A187870 := proc(n)         1/x^4 -1/(3*x^2) -1/(x^3*arctanh(x)) ;         coeftayl(%, x=0, 2*n) ;         numer(%) ; end proc: seq(A187870(n), n=0..10) ; # R. J. Mathar, Sep 21 2011 # Or seq((-1)^n*numer(coeff(series(1/arctan(x), x, 2*n+2), x, 2*n+1)), n=1..14); # Peter Luschny, Oct 04 2014 MATHEMATICA a[n_] := Sum[(2^(j+1)*Binomial[2*n+3, j]*Sum[(k!*StirlingS1[j+k, j]*StirlingS2[j+1, k])/(j+k)!, {k, 0, j+1}])/(j+1), {j, 0, 2*n+3}]/ (2*n+3); Table[a[n] // Numerator, {n, 0, 13}] (* Jean-François Alcover, Jul 03 2013, after Vladimir Kruchinin's formula in A216272 *) CROSSREFS Cf. A195466 (denominator). Sequence in context: A198962 A002754 * A216272 A221405 A105038 A002278 Adjacent sequences:  A187867 A187868 A187869 * A187871 A187872 A187873 KEYWORD nonn,frac AUTHOR Groux Roland, Mar 14 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.