login
A187861
Number of 6-step one space for components leftwards or up, two space for components rightwards or down asymmetric quasi-queen's tours (antidiagonal moves become knight moves) on an n X n board summed over all starting positions.
1
0, 0, 846, 9932, 47962, 126397, 262409, 452766, 707541, 1017934, 1387600, 1813854, 2296696, 2836126, 3432144, 4084750, 4793944, 5559726, 6382096, 7261054, 8196600, 9188734, 10237456, 11342766, 12504664, 13723150, 14998224, 16329886, 17718136
OFFSET
1,3
COMMENTS
Row 6 of A187857.
LINKS
FORMULA
Empirical: a(n) = 28294*n^2 - 224508*n + 433614 for n>9.
Conjectures from Colin Barker, Apr 26 2018: (Start)
G.f.: x^3*(846 + 7394*x + 20704*x^2 + 11461*x^3 + 17172*x^4 - 3232*x^5 + 10073*x^6 - 8800*x^7 + 3655*x^8 - 2685*x^9) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>12.
(End)
EXAMPLE
Some solutions for 4 X 4:
..0..0..0..0....5..0..6..0....0..3..2..6....0..0..1..0....0..0..0..1
..3..2..4..0....4..3..0..0....1..0..0..5....0..5..0..0....0..0..3..0
..0..1..0..0....0..0..2..0....0..0..0..4....3..2..4..0....6..5..2..0
..6..5..0..0....1..0..0..0....0..0..0..0....6..0..0..0....0..0..4..0
CROSSREFS
Cf. A187857.
Sequence in context: A323253 A160212 A188296 * A280484 A203335 A252253
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 14 2011
STATUS
approved