login
Rank transform of the sequence floor(n*sqrt(2)+1/2); complement of A187842.
2

%I #5 Dec 04 2016 19:46:25

%S 1,3,5,7,8,10,12,14,16,17,19,21,23,25,26,28,30,31,34,35,37,39,41,42,

%T 44,46,48,50,51,53,55,57,59,60,62,64,66,68,69,71,73,74,77,78,80,82,83,

%U 85,87,89,91,93,95,96,98,100,102,103,105,107,109,111,112,114,116,117,119,121,123,125,126,128,130,132,134,135,137,139,141,143,145,146

%N Rank transform of the sequence floor(n*sqrt(2)+1/2); complement of A187842.

%C See A187224.

%t r=2^(1/2);

%t seqA = Table[Floor[r*n+1/2], {n, 1, 220}]

%t seqB = Table[n, {n, 1, 220}];(*A000027*)

%t jointRank[{seqA_,

%t seqB_}] := {Flatten@Position[#1, {_, 1}],

%t Flatten@Position[#1, {_, 2}]} &[

%t Sort@Flatten[{{#1, 1} & /@ seqA, {#1, 2} & /@ seqB}, 1]];

%t limseqU =

%t FixedPoint[jointRank[{seqA, #1[[1]]}] &,

%t jointRank[{seqA, seqB}]][[1]] (*A187841*)

%t Complement[Range[Length[seqA]], limseqU] (*A187842*)

%t (*by _Peter J. C. Moses_, Mar 13 2011*)

%Y Cf. A187224, A187842, A187839.

%K nonn

%O 1,2

%A _Clark Kimberling_, Mar 13 2011