login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187830 a(n)=2*a(n-1)+(n+3)*a(n-2)-(n+3)*a(n-3), a(0)=0, a(1)=0, a(2)=1. 2
0, 0, 1, 2, 11, 30, 141, 472, 2165, 8302, 38613, 163144, 780953, 3554402, 17611557, 85145196, 437376337, 2225425454, 11847704869, 63032490312, 347377407169, 1923189664970, 10955002251365, 62881123205556, 369621186243777, 2193173759204902, 13281809346518213 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

This is case k=3. In general case, recurrence a(n)=2*a(n-1)+(n+k)*(a(n-2)-a(n-3)) is asymptotic to a(n) ~ c * n^(n/2+k/2+1)*exp(sqrt(n)-n/2-1/4) * (1+(12*k+31)/(24*sqrt(n))), where c is constant dependent only on k.

EGF is solution of the equation DSolve[{(3+k)*f[x] + (x-3-k)*f'[x] - (x+2)*f''[x] + f'''[x]==0, f[0]==0, f'[0]==0, f''[0]==1}, f, x]

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..300

FORMULA

E.g.f.: 1/30*exp(-(x^2/2))*((8*sqrt(2*exp(1)*Pi)*erf(1/sqrt(2))-27)*exp(x^2+x)*(x+1)*(x*(x+2)*(x*(x+2)+12)+26)+sqrt(2*Pi)*exp(x^2+x)*(x+1)*(x*(x+2)*(x*(x+2)+12)+26)*(15*erf(x/sqrt(2))-8*sqrt(exp(1))*erf((x+1)/sqrt(2)))-16*exp(x^2/2)*(x*(x+2)+2)*(x*(x+2)+9)+30*exp(1/2*x*(x+2))*(x*(x*(x*(x+5)+19)+35)+33))

a(n) ~ (1/2*sqrt(Pi)-9/(10*sqrt(2))+4/15*sqrt(Pi)*exp(1/2)*(erf(1/sqrt(2))-1)) * n^(n/2+5/2)*exp(sqrt(n)-n/2-1/4) * (1+(67/(24*sqrt(n))))

MATHEMATICA

RecurrenceTable[{(3+n)*a[-3+n]+(-3-n)*a[-2+n]-2*a[-1+n]+a[n]==0, a[0]==0, a[1]==0, a[2]==1}, a, {n, 20}]

FullSimplify[CoefficientList[Series[1/30*E^(-(x^2/2))*((8*Sqrt[2*E*Pi]*Erf[1/Sqrt[2]]-27)*E^(x^2+x)*(x+1)*(x*(x+2)*(x*(x+2)+12)+26)+Sqrt[2*Pi]*E^(x^2+x)*(x+1)*(x*(x+2)*(x*(x+2)+12)+26)*(15*Erf[x/Sqrt[2]]-8*Sqrt[E]*Erf[(x+1)/Sqrt[2]])-16*E^(x^2/2)*(x*(x+2)+2)*(x*(x+2)+9)+30*E^(1/2*x*(x+2))*(x*(x*(x*(x+5)+19)+35)+33)), {x, 0, 20}], x]* Range[0, 20]!]

CROSSREFS

Cf. A220700 (k=2), A213720 (k=1), A185309 (k=0), A185308 (k=-1), A186738 (k=-2), A186739 (k=-3), A193361 (k=-4), A220699 (k=-5).

Sequence in context: A119438 A094005 A190154 * A115058 A158295 A213898

Adjacent sequences:  A187827 A187828 A187829 * A187831 A187832 A187833

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Dec 27 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 09:33 EST 2019. Contains 329843 sequences. (Running on oeis4.)