Division gets rough:
 OEIS A187824 and A220890

Don Reble

2020 March 14

1 Introduction

From the OEIS[1]:

```
%I A187824
%S 3,4,5,6,3,4,4,5,3,6,4,4,3,5,5,4,3,6,5,5
%N a(n) is the largest m such that n is
    congruent to -1, 0 or 1 mod k for all
    k from 1 to m.
%K nonn,nice
%O 2,1
%A Kival Ngaokrajang, Dec 27 2012
```

\%I A220890
$\%$ S -1,-1, -1, 2, 3, 4, 5, 29, 41, 55, 71, 881, 791,9360
$\% \mathrm{~N} a(\mathrm{n})=$ least m such that $\mathrm{A} 187824(\mathrm{~m})=\mathrm{n}$,
or -1 if A187824 never takes the value n.
\%Y Cf. A187824, A056697, A220891.
\%K sign
$\%$ 0,4
\%A N. J. A. Sloane, Dec 302012

These sequences are about "rough division:" m roughly divides n iff m divides any of $n-1, n, n+1$. $\mathrm{A} 187824(n)+1$ is the least rough non-divisor of n. Obviously, 1,2 , and 3 roughly divide each integer, so $a(n)+1>3$.

1.1 Terminology

- Δ, Δ_{i} : a number in $\{-1,0,1\}$.
- $\not \approx$ (roughly divides): $a \neq b$ iff $\exists k, \Delta: b=k a+\Delta$.
- $\operatorname{srnd}(n)$: the smallest rough non-divisor of n, A187824 $(n)+1$.

A220890 $(n-1)$ is the least inverse of srnd. Of course it is undefined at 1,2 , and 3 ; but there are other non-values:
$\forall x: \operatorname{srnd}(x) \notin\{1,2,3,18,20,24, \ldots\}$. (Proof later.)

2 Some theorems

Theorem 1 If $a \mid b$ and $b \not \approx n$, then $a \not \approx n$.
Proof:
$b \not \approx n$, so $\exists x, \Delta: n+\Delta=b x$
$a \mid b$, so $\exists y: b=y a$
$n+\Delta=y a x=y x \cdot a$
$a \not \approx n$.
Theorem 2 If $a \not \approx n$ and $b \not \approx n$ and $\operatorname{gcd}(a, b)>2$,
then $\operatorname{lcm}(a, b) \not \approx n$.
Proof:
Let $g=\operatorname{gcd}(a, b) ; a^{\prime}=a / g ; b^{\prime}=b / g$.
$a \not \approx n$, so $\exists x, \Delta_{1}: n+\Delta_{1}=a x$
$b \not \approx n$, so $\exists y, \Delta_{2}: n+\Delta_{2}=b y$
$\Delta_{1}-\Delta_{2}=a x-b y$
$g \mid(a x-b y)$ (because $g \mid a$ and $g \mid b)$
$g \mid\left(\Delta_{1}-\Delta_{2}\right)$
$0=\Delta_{1}-\Delta_{2}$ (because $\left.\left|\Delta_{1}-\Delta_{2}\right| \leq 2<g\right)$
$0=a x-b y=a^{\prime} x-b^{\prime} y$
$b^{\prime} \mid\left(a^{\prime} x\right)$
$b^{\prime} \mid x\left(\right.$ because $\left.\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1\right)$
$\exists z: x=z b^{\prime}$
$n+\Delta_{1}=a z b^{\prime}=a^{\prime} g b^{\prime} z=\operatorname{lcm}(a, b) \cdot z$
$\operatorname{lcm}(a, b) \neq n$.
Theorem 3 If $\operatorname{gcd}(a, b)>2, v \mid \operatorname{lcm}(a, b), v>a$, and $v>b$, then v is never a smallest rough non-divisor. Proof:
Let $m=\operatorname{lcm}(a, b)$. For each n :

- If $a \not \approx n$ and $b \not \approx n$, then theorem 2 applies, and $m \not \approx n$. For each suitable $v, v \mid m$, and so $v \not \approx n$ (theorem 1). v is not a rough non-divisor.
- Otherwise, a or b is a rough non-divisor, less than any suitable v, and so v is not the smallest rough non-divisor.
Examples from M.F.Hasler's comments in A220890:
$a=9, b=12: \operatorname{gcd}=3, \mathrm{lcm}=36$
If $9 \not \approx n$ and $12 \not \approx n$, then $36 \not \approx n$.
Therefore the factors of 36 greater than 12: 18, 36 are never $\operatorname{srnd}(x)$,
$a=12, b=15: \operatorname{gcd}=3, \mathrm{lcm}=60$
If $12 \not \approx n$ and $15 \not \approx n$, then $60 \not \approx n$, 20, 30, 60 are never $\operatorname{srnd}(x)$.
$a=8, b=12: \operatorname{gcd}=4, \mathrm{lcm}=24$
If $8 \not \approx n$ and $12 \not \approx n$, then $24 \not \approx n$.
24 is never $\operatorname{srnd}(x)$.
Theorem 4 Let $b>3$ be a non-divisor of m. Then there is an integer x such that $m \not \approx x$ but not $b \not \approx x$. Proof:
Let $g=\operatorname{gcd}(b, m)$.
$\exists x, y: b x+m y=g$
not $b \mid m$, so $g<b$
$\exists \Delta: \Delta+g \notin\{-1,0,1\} \bmod b$
($\Delta=\max (2-g,-1)$ works.)
Let $x=\Delta+m y=\Delta+g-b x$.
$m \not \approx x$ but not $b \not \approx x$.

3 The range of $\operatorname{srnd}(x)$

Theorem 3 yields many non-srnd values.

- For primes p, q, r with $p<q<r$:

If $p q r \mid n$, let $a=n / p, b=n / q$. Then
$r|\operatorname{gcd}(a, b)>2, b<a<n, n| n=\operatorname{lcm}(a, b)$.

- For primes p, q with $3<p<q$:

If $p q \mid n$, let $a=3 n / p, b=3 n / q$. Then
$3|\operatorname{gcd}(a, b)>2, b<a<n, n| 3 n=\operatorname{lcm}(a, b)$.

- For primes p, q with $q>2$ and $p \neq q$: If $p q^{2} \mid n$, let $a=n / p, b=n / q$. Then $q|\operatorname{gcd}(a, b)>2, a<n, b<n, n| n=\operatorname{lcm}(a, b)$.
- For prime $p>3$:

If $4 p \mid n$, let $a=3 n / 4, b=3 n / p$. Then $3|\operatorname{gcd}(a, b)>2, b<a<n, n| 3 n=\operatorname{lcm}(a, b)$.

- If $24 \mid n$, let $a=n / 4, b=n / 3$. Then
$4|\operatorname{gcd}(a, b)>2, a<b<n, n| n=\operatorname{lcm}(a, b)$.
In each case, theorem 3 applies, and n is not a srnd value.
The non-srnd values include all multiples of
- $p q r$ (three distinct primes),
- $p q$ if $3<p<q$,
- $p q^{2}$ if $2<q$,
- $2^{2} q$ if $3<q$,
- $2^{3} \cdot 3$.

That leaves $1, p, 2 p, 3 p, p^{k}$, and $2^{2} \cdot 3=12$.
$1,2,3,12$
1,2 and 3 roughly divide anything, so are not srnd values. $\operatorname{srnd}(881)=12$, so 12 is a srnd value.
$p^{k}>3$
For prime p, let $b=p^{k}>3$. (If $p>3$ then $k \geq 1$;
else $k>1$.)
Let $a_{i}=i$, for each $1 \leq i<b$; let $m=\operatorname{lcm}\left(a_{i}\right)$.
Then not $b \mid m$, and by theorem 4 , there is an x such that $m \not \approx x$, and so all $a_{i} \not \approx x$, but not $b \not \approx x$.
Therefore b is a srnd value.

$2 p$

For odd prime p, let a_{i} be the values from 1 to $2 p-1$, except for p. Let $m=\operatorname{lcm}\left(a_{i}\right)$; then m is even and $\operatorname{gcd}(p, m)=1$.
$\exists x, y: p x+m y=1 ; x$ is odd
Let $n=p x=1-m y$.
for each $a_{i}, a_{i} \not \approx n$
$n=p x \equiv p \bmod 2 p($ because x is odd)
$p \not \approx n$ but not $2 p \not \approx n$
And so $\operatorname{srnd}(n)=2 p$. Also, $\operatorname{srnd}(2)=4$; so each $2 p$ is a snrd value.

$3 p$

For prime $p>3$, let a_{i} be the values from 1 to
$3 p-1$, except for p and $2 p$. Let $m=\operatorname{lcm}\left(a_{i}\right)$; then $3 \mid m$ and $\operatorname{gcd}(p, m)=1$.
$\exists x, y: p x+m y=1 ; \operatorname{not} 3 \mid x$
Let $n=2 p x-1=1-2 m y$.
for each $a_{i}, a_{i} \not \approx n ; p \not \approx n$ and $2 p \not \approx n$
$3 p \mid 3 p x=n+1+p x, n \equiv-1-p x \bmod 3 p \not \equiv \Delta$
(because not $3 \mid x$)
not $3 p \not \approx n$
And so $\operatorname{srnd}(n)=3 p$. Also, $\operatorname{srnd}(4)=6$,
$\operatorname{srnd}(41)=9$; so each $3 p$ is a snrd value.

A220890

And so the factorizations of $n+1$ reveal the holes of A220890 (n). If $n+1=p^{k}>3, n+1=2 p$,
$n+1=3 p$, or $n+1=12$, the sequence has a value; otherwise -1 .

References

[1] Neil Sloane, The Online Encyclopedia of Integer Sequences, http://oeis.org

