

A187765


The (n1)th decimal place of the fractional part of the square root of n.


0



0, 4, 3, 0, 0, 8, 1, 1, 0, 0, 3, 3, 3, 9, 1, 0, 5, 4, 2, 8, 8, 5, 4, 6, 0, 1, 2, 7, 5, 0, 8, 7, 2, 3, 0, 0, 2, 2, 7, 9, 4, 0, 6, 0, 7, 3, 0, 4, 0, 7, 3, 2, 4, 8, 8, 6, 9, 0, 7, 4, 3, 5, 7, 0, 2, 3, 3, 9, 8, 7, 5, 7, 9, 6, 4, 6, 3, 4, 9, 5, 0, 3, 5, 0, 7, 0, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

If n=1 then the term is the first digit before the decimal point. If the square root of n is a whole number then the term is 0.


LINKS

Table of n, a(n) for n=1..87.


EXAMPLE

If n=2, sqrt(2)=1.41421356 approx., the 1st(21) decimal place of which is 4 so the 2nd term is 4. If n=3, sqrt(3)=1.73205081 approx., the 2nd(31) decimal place of which is 3 so the 3rd term is 3.


MATHEMATICA

Join[{0}, Table[RealDigits[Sqrt[n]  Floor[Sqrt[n]], 10, n, 1][[1, 2]], {n, 2, 87}]]


PROG

(Python)
for n in range(1, 16):
...x=str(n**0.5)
...for i in range(n):
.......x=x+"0"
...if n==1:
.......r=str(x[n1])
...else:
.......r=r+", "+str(x[n])
...if n==15:
.......print(r)


CROSSREFS

Cf. A003076 (nth digit after decimal point of square root of n).
Sequence in context: A257536 A019983 A019984 * A274818 A274819 A106646
Adjacent sequences: A187762 A187763 A187764 * A187766 A187767 A187768


KEYWORD

nonn,base


AUTHOR

Ruskin Harding, Jan 04 2013


STATUS

approved



