login
A187744
Numbers whose digital sum is a triangular number.
3
0, 1, 3, 6, 10, 12, 15, 19, 21, 24, 28, 30, 33, 37, 42, 46, 51, 55, 60, 64, 69, 73, 78, 82, 87, 91, 96, 100, 102, 105, 109, 111, 114, 118, 120, 123, 127, 132, 136, 141, 145, 150, 154, 159, 163, 168, 172, 177, 181, 186, 190, 195, 201, 204, 208, 210, 213, 217
OFFSET
1,3
COMMENTS
Every term with some permutations can become another term of this sequence.
The subsequence of primes begins: 3, 19, 37, 73, 91, 127...
The subsequence of triangular numbers begins: 1, 3, 6, 10, 15, 21, 28, 55...
LINKS
FORMULA
If decimal expansion of n is x1 x2 ... xk then x1 + x2 + ... xk = T.
A010054(A007953(a(n))) = 1. - Reinhard Zumkeller, Jan 03 2013
MATHEMATICA
TriangularQ[n_] := IntegerQ[Sqrt[1 + 8 n]]; Select[Range[0, 300], TriangularQ[Total[IntegerDigits[#]]] &] (* T. D. Noe, Jan 03 2013 *)
PROG
(Haskell)
a187744 n = a187744_list !! (n-1)
a187744_list = filter ((== 1) . a010054 . a007953) [0..]
-- Reinhard Zumkeller, Jan 03 2013
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Dario Piazzalunga, Jan 03 2013
STATUS
approved