The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A187739 G.f.: Sum_{n>=0} (3*n+2)^n * x^n / (1 + (3*n+2)*x)^n. 8
 1, 5, 39, 432, 6156, 106920, 2187000, 51438240, 1366787520, 40474546560, 1321374902400, 47140942464000, 1824354473356800, 76113765702374400, 3405263691641011200, 162618715070203392000, 8256027072794941440000, 444024146933226123264000, 25217509310311152586752000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS More generally, if Sum_{n>=0} a(n)*x^n = Sum_{n>=0} (b*n+c)^n * x^n / (1 + (b*n+c)*x)^n, then Sum_{n>=0} a(n)*x^n/n! = (2 - 2*(b-c)*x + b*(b-2*c)*x^2)/(2*(1-b*x)^2) so that a(n) = (b*n + (b+2*c)) * b^(n-1) * n!/2 for n>0 with a(0)=1. LINKS FORMULA a(n) = (3*n+7) * 3^(n-1) * n!/2  for n>0 with a(0)=1. E.g.f.: (2 - 2*x - 3*x^2) / (2*(1-3*x)^2). EXAMPLE G.f.: A(x) = 1 + 5*x + 39*x^2 + 432*x^3 + 6156*x^4 + 106920*x^5 +... where A(x) = 1 + 5*x/(1+5*x) + 8^2*x^2/(1+8*x)^2 + 11^3*x^3/(1+11*x)^3 + 14^4*x^4/(1+14*x)^4 + 17^5*x^5/(1+17*x)^5 +... PROG (PARI) {a(n)=polcoeff(sum(m=0, n, ((3*m+2)*x)^m/(1+(3*m+2)*x +x*O(x^n))^m), n)} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A187735, A014479, A187738, A221160, A221161, A187740. Sequence in context: A127189 A121354 A122486 * A199244 A322884 A221412 Adjacent sequences:  A187736 A187737 A187738 * A187740 A187741 A187742 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 03 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 3 01:39 EDT 2020. Contains 333195 sequences. (Running on oeis4.)