login
a(n) = 5*n - (9 + (-1)^n)/2.
1

%I #45 Apr 15 2023 04:19:34

%S 1,5,11,15,21,25,31,35,41,45,51,55,61,65,71,75,81,85,91,95,101,105,

%T 111,115,121,125,131,135,141,145,151,155,161,165,171,175,181,185,191,

%U 195,201,205,211,215,221,225

%N a(n) = 5*n - (9 + (-1)^n)/2.

%C Numbers congruent to {1,5} mod 10. - _Bruno Berselli_, Mar 31 2012

%H Vincenzo Librandi, <a href="/A187715/b187715.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F a(n) = a(n-1) + 4 if n is even, a(n) = a(n-1) + 6 if n is odd.

%F a(n) = 2*a(n-1) - a(n-2) - 2*(-1)^n.

%F From _R. J. Mathar_, Mar 15 2011: (Start)

%F G.f.: x*(1 + 4*x + 5*x^2)/( (1+x)*(1-x)^2 ).

%F Bisections: a(2*n+1) = A017281(n), a(2*n) = A017329(n-1). (End)

%F a(n) = 5*(n-1) bitwise-OR 1. - _Jon Maiga_, Nov 24 2018

%F E.g.f.: ((10*x-9)*exp(x) - exp(-x) + 10)/2. - _G. C. Greubel_, Dec 04 2018

%F Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(5+2*sqrt(5))*Pi/20 + 3*log(phi)/(4*sqrt(5)) + log(5)/8, where phi is the golden ratio (A001622). - _Amiram Eldar_, Apr 15 2023

%p [5*n-(9+(-1)^n)/2$n=1..50]; # _Muniru A Asiru_, Nov 25 2018

%t nxt[{n_,a_}]:={n+1,If[EvenQ[n+1],a+4,a+6]}; Transpose[NestList[nxt,{1,1},50]][[2]] (* _Harvey P. Dale_, Feb 16 2013 *)

%t Table[BitOr[5*n, 1], {n, 0, 50}] (* _Jon Maiga_, Nov 24 2018 *)

%o (Magma) [5*n -(9+(-1)^n)/2: n in [1..60]];

%o (GAP) Filtered([1..250],n-> n mod 10 =1 or n mod 10 = 5); # _Muniru A Asiru_, Nov 25 2018

%o (Python) for n in range(1,60): print(int(5*n - (9 + (-1)**n)/2), end=', ') # _Stefano Spezia_, Nov 30 2018

%o (PARI) vector(50, n, (10*n -9-(-1)^n)/2) \\ _G. C. Greubel_, Dec 04 2018

%o (Sage) [(10*n -9-(-1)^n)/2 for n in (1..50)] # _G. C. Greubel_, Dec 04 2018

%Y Cf. A001622, A010711 (first differences), A017281, A017329.

%K nonn,easy

%O 1,2

%A _Vincenzo Librandi_, Mar 13 2011

%E Definition rewritten by _R. J. Mathar_, Mar 15 2011