login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187653 Binomial cumulative sums of the central Stirling numbers of the second kind (A007820). 1
1, 2, 10, 115, 2108, 52006, 1606229, 59550709, 2575966264, 127343893378, 7081926869746, 437585883729512, 29740614295527535, 2205002457135885616, 177099066222770055407, 15317784128757306540986, 1419476705128570400447376 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..100

FORMULA

a(n) = sum(binomial(n,k)S(2k,k)),k=0..n)

a(n) ~ exp(c*(2-c)/4) * StirlingS2(2*n,n) ~ 2^(2*n-1/2)*n^(n-1/2)/(sqrt(Pi*(1-c))*exp(n-c*(2-c)/4)*(c*(2-c))^n), where c = - LambertW(-2/exp(2)) = 0.406375739959959907676958... - Vaclav Kotesovec, Jan 02 2013

O.g.f.: Sum_{n>=0} n^(2*n)/n! * x^n/(1-x)^(n+1) * exp(-n^2*x/(1-x)). - Paul D. Hanna, Jan 02 2013

MAPLE

seq(sum(binomial(n, k)*combinat[stirling2](2*k, k), k=0..n), n=0..12);

MATHEMATICA

Table[Sum[Binomial[n, k]StirlingS2[2k, k], {k, 0, n}], {n, 0, 16}]

PROG

(Maxima) makelist(sum(binomial(n, k)*stirling2(2*k, k), k, 0, n), n, 0, 12);

(PARI) a(n)=polcoeff(sum(m=0, n, m^(2*m)/m!*x^m/(1-x)^(m+1)*exp(-m^2*x/(1-x+x*O(x^n)))), n)

for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 02 2013

CROSSREFS

Cf. A007820.

Sequence in context: A113089 A054928 A132522 * A131811 A261496 A006121

Adjacent sequences:  A187650 A187651 A187652 * A187654 A187655 A187656

KEYWORD

nonn,easy

AUTHOR

Emanuele Munarini, Mar 12 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 07:51 EDT 2019. Contains 322381 sequences. (Running on oeis4.)