%I #48 Oct 22 2021 23:47:25
%S 1,1,1,1,2,1,1,5,5,1,1,13,36,13,1,1,34,281,281,34,1,1,89,2245,6728,
%T 2245,89,1,1,233,18061,167089,167089,18061,233,1,1,610,145601,4213133,
%U 12988816,4213133,145601,610,1
%N Array T(m,n) read by antidiagonals: number of domino tilings of the 2m X 2n grid (m>=0, n>=0).
%C A099390 is the main entry for this problem.
%C The even-indexed rows and columns of the square array in A187596.
%C Row (and column) 2 is given by A122367. - _Nathaniel Johnston_, Mar 22 2011
%H Alois P. Heinz, <a href="/A187617/b187617.txt">Antidiagonals n = 0..26, flattened</a>
%H N. Allegra, <a href="http://arxiv.org/abs/1410.4131">Exact solution of the 2d dimer model: Corner free energy, correlation functions and combinatorics</a>, arXiv:1410.4131 [cond-mat.stat-mech], 2014. See Table 1.
%H Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter and Tianyuan Xu, <a href="https://doi.org/10.37236/4472">Sandpiles and Dominos</a>, El. J. Comb., 22 (2015), P1.66. See Theorem 15.
%H <a href="/index/Do#domino">Index entries for sequences related to dominoes</a>
%e The array begins:
%e 1, 1, 1, 1, 1, 1, ...
%e 1, 2, 5, 13, 34, 89, ...
%e 1, 5, 36, 281, 2245, 18061, ...
%e 1, 13, 281, 6728, 167089, 4213133, ...
%e 1, 34, 2245, 167089, 12988816, 1031151241, ...
%e 1, 89, 18061, 4213133, 1031151241, 258584046368, ...
%p ft:=(m,n)->
%p 2^(m*n/2)*mul( mul(
%p (cos(Pi*i/(n+1))^2+cos(Pi*j/(m+1))^2), j=1..m/2), i=1..n/2);
%p T:=(m,n)->round(evalf(ft(m,n),300));
%t T[m_, n_] := Product[2(2 + Cos[(2j Pi)/(2m+1)] + Cos[(2k Pi)/(2n+1)]), {j, 1, m}, {k, 1, n}];
%t Table[T[m-n, n] // Round, {m, 0, 8}, {n, 0, m}] // Flatten (* _Jean-François Alcover_, Aug 05 2018 *)
%o (PARI) default(realprecision, 120);
%o {T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*cos(a*Pi/(2*n+1))^2+4*cos(b*Pi/(2*k+1))^2)))} \\ _Seiichi Manyama_, Jan 09 2021
%Y A187618 is the triangle version.
%Y Cf. A187596, A099390, A348566.
%Y Main diagonal is A004003. Second and third rows give A001519, A188899.
%K nonn,tabl
%O 0,5
%A _N. J. A. Sloane_, Mar 11 2011
%E More terms from _Nathaniel Johnston_, Mar 22 2011