

A187614


Primes p such that the decimal representation of 1/p does not contain every digit 09.


3



2, 3, 5, 7, 11, 13, 31, 37, 41, 43, 67, 73, 79, 101, 137, 239, 271, 353, 449, 757, 859, 1933, 4649, 8779, 9091, 9901, 21401, 21649, 25601, 27961, 52579, 62003, 123551, 333667, 513239, 538987, 909091, 1676321, 2071723, 2906161, 5882353, 10838689, 35121409, 52986961, 99990001, 265371653, 1056689261, 1058313049, 1360682471
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Every repunit prime (A004022) is here. There are 113 terms of A046107, having periods of up to 256, that are here. The only known uniqueperiod prime (A007615) not here is the one having period 92092. Is this sequence finite?  T. D. Noe, Mar 13 2011


LINKS

Table of n, a(n) for n=1..49.


EXAMPLE

4649 is in the sequence because 1/4649 = .00021510002151000215.... contain
only the digits 0, 1, 2 and 5.


MATHEMATICA

Join[{2, 3, 5}, Select[Prime[Range[4, 10000]], Length[Union[RealDigits[1/#][[1, 1]]]] < 10 &]]


CROSSREFS

Cf. A187372.
Sequence in context: A067908 A236128 A262283 * A191077 A262377 A237600
Adjacent sequences: A187611 A187612 A187613 * A187615 A187616 A187617


KEYWORD

nonn,base


AUTHOR

Michel Lagneau, Mar 12 2011


EXTENSIONS

Extended by T. D. Noe, Mar 12 2011


STATUS

approved



