login
A187610
Number of 6-step one space for components leftwards or up, two space for components rightwards or down asymmetric quasi-bishop's tours (antidiagonal moves become knight moves) on an n X n board summed over all starting positions.
1
0, 0, 0, 0, 96, 711, 2083, 4758, 8979, 14434, 21526, 29978, 39790, 50962, 63494, 77386, 92638, 109250, 127222, 146554, 167246, 189298, 212710, 237482, 263614, 291106, 319958, 350170, 381742, 414674, 448966, 484618, 521630, 560002, 599734, 640826
OFFSET
1,5
COMMENTS
Row 6 of A187606.
LINKS
FORMULA
Empirical: a(n) = 680*n^2 - 7188*n + 18314 for n>9.
Conjectures from Colin Barker, Apr 25 2018: (Start)
G.f.: x^5*(96 + 423*x + 238*x^2 + 546*x^3 + 243*x^4 - 312*x^5 + 403*x^6 - 277*x^7) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>12.
(End)
EXAMPLE
Some solutions for 5 X 5:
..0..0..0..0..1....0..0..0..0..0....0..6..0..0..0....0..0..5..0..0
..0..0..6..0..0....0..0..6..0..0....0..0..5..0..0....4..0..0..1..0
..5..0..0..2..0....2..0..0..5..0....1..0..0..4..0....0..3..0..0..6
..0..4..0..0..0....0..1..0..0..4....0..0..0..0..3....0..0..2..0..0
..0..0..3..0..0....0..0..3..0..0....0..0..2..0..0....0..0..0..0..0
CROSSREFS
Cf. A187606.
Sequence in context: A268795 A232405 A269032 * A269215 A096783 A253410
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 11 2011
STATUS
approved