login
A187560
a(n) = 4^(n+1)-2^n-1.
1
2, 13, 59, 247, 1007, 4063, 16319, 65407, 261887, 1048063, 4193279, 16775167, 67104767, 268427263, 1073725439, 4294934527, 17179803647, 68719345663, 274877644799, 1099511103487, 4398045462527, 17592183947263, 70368739983359, 281474968322047, 1125899890065407
OFFSET
0,1
COMMENTS
For n>0, binary numbers of the form (n+1)0 n, where n is the index value and the number of 1's. This can be formed by appending a leading 1 to the terms of A129868. It is also A156589 written in bit-reverse order.
FORMULA
a(n) = 4^(n+1)-2^n-1 = A171499(n)-1.
G.f.: ( -2+x+4*x^2 ) / ( (x-1)*(2*x-1)*(4*x-1) ). - R. J. Mathar, Apr 09 2011
a(0)=2, a(1)=13, a(2)=59, a(n)=7*a(n-1)-14*a(n-2)+8*a(n-3). - Harvey P. Dale, Feb 25 2013
EXAMPLE
Binary values of the first 7 terms are 10, 1101, 111011, 11110111, 1111101111, 111111011111, 11111110111111.
MATHEMATICA
Table[4^(n+1)-2^n-1, {n, 0, 30}] (* or *) LinearRecurrence[{7, -14, 8}, {2, 13, 59}, 30] (* Harvey P. Dale, Feb 25 2013 *)
PROG
(PARI) a(n)=4^(n+1)-2^n-1 \\ Charles R Greathouse IV, Nov 01 2015
CROSSREFS
Cf. A171499.
Sequence in context: A180041 A042061 A229736 * A338818 A290721 A354942
KEYWORD
nonn,easy
AUTHOR
Brad Clardy, Mar 25 2011
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Feb 25 2018
STATUS
approved