login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187560 a(n) = 4^(n+1)-2^n-1. 1
2, 13, 59, 247, 1007, 4063, 16319, 65407, 261887, 1048063, 4193279, 16775167, 67104767, 268427263, 1073725439, 4294934527, 17179803647, 68719345663, 274877644799, 1099511103487, 4398045462527, 17592183947263, 70368739983359, 281474968322047, 1125899890065407 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

For n>0, binary numbers of the form (n+1)0 n, where n is the index value and the number of 1's. This can be formed by appending a leading 1 to the terms of A129868. It is also A156589 written in bit-reverse order.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (7,-14,8).

FORMULA

a(n) = 4^(n+1)-2^n-1 = A171499(n)-1.

G.f.: ( -2+x+4*x^2 ) / ( (x-1)*(2*x-1)*(4*x-1) ). - R. J. Mathar, Apr 09 2011

a(0)=2, a(1)=13, a(2)=59, a(n)=7*a(n-1)-14*a(n-2)+8*a(n-3). - Harvey P. Dale, Feb 25 2013

EXAMPLE

Binary values of the first 7 terms are 10, 1101, 111011, 11110111, 1111101111, 111111011111, 11111110111111.

MATHEMATICA

Table[4^(n+1)-2^n-1, {n, 0, 30}] (* or *) LinearRecurrence[{7, -14, 8}, {2, 13, 59}, 30] (* Harvey P. Dale, Feb 25 2013 *)

PROG

(PARI) a(n)=4^(n+1)-2^n-1 \\ Charles R Greathouse IV, Nov 01 2015

CROSSREFS

Sequence in context: A180041 A042061 A229736 * A290721 A205532 A294052

Adjacent sequences:  A187557 A187558 A187559 * A187561 A187562 A187563

KEYWORD

nonn,easy

AUTHOR

Brad Clardy, Mar 25 2011

EXTENSIONS

Terms a(21) and beyond from Andrew Howroyd, Feb 25 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 09:03 EDT 2020. Contains 337298 sequences. (Running on oeis4.)