login
A187557
Triangle read by rows of products of Stirling numbers of the second kind (A008277): a(n,k) = S(n,k) S(n+1,k+1)
0
1, 0, 1, 0, 3, 1, 0, 7, 18, 1, 0, 15, 175, 60, 1, 0, 31, 1350, 1625, 150, 1, 0, 63, 9331, 31500, 9100, 315, 1, 0, 127, 60858, 512001, 367500, 37240, 588, 1, 0, 255, 384175, 7505820, 11823651, 2778300, 122892, 1008, 1, 0, 511, 2379150, 103167625, 330419250, 158670477, 15558480, 346500, 1620, 1, 0, 1023, 14564011, 1359847500, 8414726650, 7632684675, 1460631249, 69854400, 866250, 2475, 1
OFFSET
0,5
EXAMPLE
Triangle begins:
1
0,1
0,3,1
0,7,18,1
0,15,175,60,1
0,31,1350,1625,150,1
0,63,9331,31500,9100,315,1
0,127,60858,512001,367500,37240,588,1
0,255,384175,7505820,11823651,2778300,122892,1008,1
MAPLE
seq(seq(combinat[stirling2](n, k)*combinat[stirling2](n+1, k+1), k=0..n), n=0..8);
MATHEMATICA
Table[StirlingS2[n, k]StirlingS2[n + 1, k + 1], {n, 0, 8}, {k, 0, 8}]//MatrixForm
PROG
(Maxima) create_list(stirling2(n, k)*stirling2(n+1, k+1), n, 0, 10, k, 0, n);
CROSSREFS
Sequence in context: A354010 A143395 A090536 * A270388 A052420 A348096
KEYWORD
nonn,easy,tabl
AUTHOR
Emanuele Munarini, Mar 11 2011
STATUS
approved