login
A187552
Triangle a(n,k) = binomial(n,k)*binomial(n+1,k+1)*binomial(n+2,k+2) read by rows.
1
1, 6, 1, 18, 24, 1, 40, 180, 60, 1, 75, 800, 900, 120, 1, 126, 2625, 7000, 3150, 210, 1, 196, 7056, 36750, 39200, 8820, 336, 1, 288, 16464, 148176, 308700, 164640, 21168, 504, 1, 405, 34560, 493920, 1778112, 1852200, 564480, 45360, 720, 1, 550, 66825, 1425600, 8149680, 14669424, 8731800, 1663200, 89100, 990, 1, 726, 121000, 3675375, 31363200, 89646480, 92207808, 34303500, 4356000, 163350, 1320, 1
OFFSET
0,2
COMMENTS
Row sums are 1, 7, 43, 281, 1896, 13112, 92359,...
EXAMPLE
Triangle begins:
1
6,1
18,24,1
40,180,60,1
75,800,900,120,1
126,2625,7000,3150,210,1
196,7056,36750,39200,8820,336,1
288,16464,148176,308700,164640,21168,504,1
405,34560,493920,1778112,1852200,564480,45360,720,1
MAPLE
A187552 := proc(n, k) binomial(n, k)*binomial(n+1, k+1)*binomial(n+2, k+2) ; end proc:
MATHEMATICA
Table[Binomial[n, k]Binomial[n + 1, k + 1]Binomial[n + 2, k + 2], {n, 0, 8}, {k, 0, 8}]//MatrixForm
PROG
(Maxima) create_list(binomial(n, k)*binomial(n+1, k+1)*binomial(n+2, k+2), n, 0, 8, k, 0, n);
CROSSREFS
Cf. A103371, A002411 (column k=0), A165187 (column k=1), A007531 (subdiagonal)
Sequence in context: A369904 A373573 A092371 * A157386 A157396 A019430
KEYWORD
nonn,easy,tabl
AUTHOR
Emanuele Munarini, Mar 11 2011
STATUS
approved