login
T(n,k)=Number of (n+1)X(n+1) 0..k arrays with the array of 2X2 subblock determinants antisymmetric and no off-diagonal 2X2 subblock determinant zero
8

%I #5 Mar 31 2012 12:36:08

%S 10,31,6,64,98,2,113,450,354,0,170,1590,4200,1780,0,255,3426,34776,

%T 73764,12008,0,336,8546,107990,1655170,2048596,157694,0,449,13992,

%U 475370,8174314,144075566,129034386,2808560,0,570,26158,978568,70304076

%N T(n,k)=Number of (n+1)X(n+1) 0..k arrays with the array of 2X2 subblock determinants antisymmetric and no off-diagonal 2X2 subblock determinant zero

%C Table starts

%C .10......31........64.......113........170......255....336...449.570

%C ..6......98.......450......1590.......3426.....8546..13992.26158

%C ..2.....354......4200.....34776.....107990...475370.978568

%C ..0....1780.....73764...1655170....8174314.70304076

%C ..0...12008...2048596.144075566.1201064094

%C ..0..157694.129034386

%C ..0.2808560

%C ..0

%H R. H. Hardin, <a href="/A187521/b187521.txt">Table of n, a(n) for n = 1..41</a>

%e Some k=3 solutions for 5X5

%e ..0..0..2..0..2....2..3..2..1..1....2..1..2..3..3....1..1..0..3..1

%e ..2..1..1..2..0....2..3..3..3..2....2..1..1..1..2....1..1..1..0..2

%e ..2..2..2..2..1....3..3..3..1..2....1..1..1..2..1....2..1..1..1..2

%e ..2..0..1..1..1....2..1..3..1..1....1..2..1..2..2....1..2..1..1..1

%e ..0..2..3..2..2....3..2..2..1..1....2..1..2..2..2....3..0..1..2..2

%Y Row 1 is A059306

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ Mar 10 2011