login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187496 Let i in {1,2,3,4} and r>=0 an integer. Let p={p_1,p_2,p_3,p_4}={-3,0,1,2}, n=3*r+p_i and define a(-3)=0. Then a(n)=a(3*r+p_i) gives the quantity of H_(9,2,0) tiles in a subdivided H_(9,i,r) tile after linear scaling by the factor Q^r, where Q=sqrt(2*cos(Pi/9)). 3
1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 3, 1, 5, 1, 4, 1, 9, 5, 14, 6, 14, 7, 28, 20, 42, 27, 48, 34, 90, 75, 132, 109, 165, 143, 297, 274, 429, 417, 571, 560, 1000, 988, 1429, 1548, 1988, 2108, 3417, 3536, 4846, 5644, 6953, 7752, 11799, 12597, 16645 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

(Start) See A187498 for supporting theory. Define the matrix

U_1=

(0 1 0 0)

(1 0 1 0)

(0 1 0 1)

(0 0 1 1).

Let r>=0, and let B_r be the r-th "block" defined by B_r={a(3*r-3),a(3*r),a(3*r+1),a(3*r+2)} with a(-3)=0. Note that B_r-B_(r-1)-3*B_(r-2)+2*B_(r-3)+B_(r-4)={0,0,0,0}, for r>=4, with initial conditions {B_k}={{0,1,0,0},{1,0,1,0},{0,2,0,1},{2,0,3,1}}, k=0,1,2,3. Let p={p_1,p_2,p_3,p_4}={-3,0,1,2}, n=3*r+p_i and M=(m_(i,j))=(U_1)^r, i,j=1,2,3,4. Then B_r corresponds component-wise to the second column of M, and a(n)=a(3*r+p_i)=m_(i,2) gives the quantity of H_(9,2,0) tiles that should appear in a subdivided H_(9,i,r) tile. (End)

Since a(3*r)=a(3*(r+1)-3) for all r, this sequence arises by concatenation of second-column entries m_(2,2), m_(3,2) and m_(4,2) from successive matrices M=(U_1)^r.

REFERENCES

L. E. Jeffery, Unit-primitive matrices and rhombus substitution tilings, (in preparation).

LINKS

Table of n, a(n) for n=0..54.

FORMULA

Recurrence: a(n)=a(n-3)+3*a(n-6)-2*a(n-9)-a(n-12), for n>=12, with initial conditions {a(m)}={1,0,0,0,1,0,2,0,1,0,3,1}, m=0,1,...,11.

G.f.: (1-x^3+x^4-x^6-x^7+x^8)/(1-x^3-3*x^6+2*x^9+x^12).

CROSSREFS

Cf. A187495, A187497, A187498.

Sequence in context: A125924 A082513 A187495 * A193056 A244417 A086780

Adjacent sequences:  A187493 A187494 A187495 * A187497 A187498 A187499

KEYWORD

nonn,easy

AUTHOR

L. Edson Jeffery, Mar 17 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 13:07 EST 2016. Contains 278875 sequences.