login
Decimal expansion of the Hausdorff dimension of the Feigenbaum attractor and repeller.
0

%I #14 Mar 21 2022 05:26:49

%S 5,3,8,0,4,5,1,4,3,5,8,0,5,4,9,9,1,1,6,7,1,4,1,5,5,6

%N Decimal expansion of the Hausdorff dimension of the Feigenbaum attractor and repeller.

%H F. Christiansen, P. Cvitanovic, and H. H. Rugh, <a href="http://dx.doi.org/10.1088/0305-4470/23/14/005">The spectrum of the period-doubling operator in terms of cycles</a>, J. Phys A, 23 (14) (1990), pp. L713S-L717S.

%H P. Grassberger, <a href="https://doi.org/10.1007/BF01106792">On the Hausdorff dimension of fractal attractors</a>, Journal of Statistical Physics 26 (1981), pp. 173-179.

%H J. Thurlby, <a href="https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.840285">Rigorous calculations of renormalisation fixed points and attractors</a>, PhD thesis, U. Portsmouth, (2021), eq. (5.58)

%e 0.53804514358054991167141556...

%Y Cf. A006890.

%K nonn,cons

%O 0,1

%A _Paul Muljadi_, Mar 10 2011