login
A187391
Floor(r*n), where r=1+sqrt(8)+sqrt(7); complement of A187392.
2
6, 12, 19, 25, 32, 38, 45, 51, 58, 64, 71, 77, 84, 90, 97, 103, 110, 116, 123, 129, 135, 142, 148, 155, 161, 168, 174, 181, 187, 194, 200, 207, 213, 220, 226, 233, 239, 246, 252, 258, 265, 271, 278, 284, 291, 297, 304, 310, 317, 323, 330, 336, 343, 349, 356, 362, 369, 375, 381, 388, 394, 401, 407, 414, 420, 427, 433, 440, 446, 453
OFFSET
1,1
COMMENTS
A187391 and A187392 are the Beatty sequences based on r=1+sqrt(8)+sqrt(7) and s=1+sqrt(8)-sqrt(7); 1/r+1/s=1.
FORMULA
a(n)=floor(r*n), where r=1+sqrt(8)+sqrt(7).
MATHEMATICA
k=8; r=1+k^(1/2)+(k-1)^(1/2); s=1+k^(1/2)-(k-1)^(1/2);
Table[Floor[r*n], {n, 1, 80}] (* A187391 *)
Table[Floor[s*n], {n, 1, 80}] (* A187392 *)
CROSSREFS
Cf. A187392.
Sequence in context: A100357 A190265 A135358 * A081846 A078816 A374908
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 09 2011
STATUS
approved