login
Rank transform of the sequence floor(n/sqrt(2)); complement of A187352.
2

%I #10 Feb 10 2014 21:26:28

%S 1,2,4,5,7,8,9,11,13,14,15,17,19,20,22,23,25,26,27,29,30,32,34,35,36,

%T 38,39,40,42,44,45,46,48,50,51,52,54,55,57,59,60,61,63,65,66,67,69,70,

%U 71,73,75,76,78,79,80,82,84,86,87,88,90,91,92,94,95,97,99,100,101,103,104

%N Rank transform of the sequence floor(n/sqrt(2)); complement of A187352.

%C See A187224.

%t seqA=Table[Floor[n(2^(-1/2))], {n, 1, 220}] (* A049472 *)

%t seqB=Table[n, {n, 1, 220}]; (* A000027 *)

%t jointRank[{seqA_, seqB_}]:={Flatten@Position[#1, {_, 1}], Flatten@Position[#1, {_, 2}]}&[Sort@Flatten[{{#1, 1}&/@seqA, {#1, 2}&/@seqB}, 1]];

%t limseqU=FixedPoint[jointRank[{seqA, #1[[1]]}]&, jointRank[{seqA, seqB}]][[1]] (* A187351 *)

%t Complement[Range[Length[seqA]], limseqU] (* A187352 *)

%t (* by _Peter J. C. Moses_, Mar 07 2011 *)

%Y Cf. A187224, A187352.

%K nonn

%O 1,2

%A _Clark Kimberling_, Mar 08 2011