This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A187276 Number of d+/d- diagonally convex polyominoes with n cells. 2
 1, 2, 6, 19, 61, 196, 630, 2024, 6499, 20860, 66941, 214797, 689201, 2211347, 7095226, 22765414, 73044113, 234366327, 751978494, 2412768983, 7741517800, 24839137696, 79697907919, 255715662623 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A polyomino is d+ [d-] convex if the intersection of its interior with any line of slope 1 [-1] through the centers of the cells is connected. REFERENCES M. Bousquet-MÃ©lou and R. Brak, "Exactly Solved Models", in A. J. Guttmann, ed., Polygons, Polyominoes and Polycubes, Springer, 2009, pp. 46 & 76. LINKS EXAMPLE A(5) = 61 = A001168(5) - 2, omitting two of the orientations of the V pentomino. MATHEMATICA ab[n_, m_, q_]:=Sum[q[n-m-r, k], {r, 1, m}, {k, m+1-r, n-m-r}] bb[n_, m_, q_]:=Sum[q[n-m-r, m-r], {r, 1, m-1}]+Sum[q[n-m-r, k], {r, 1, m-1}, {k, m-r, n-m-r}] cb[n_, m_, q_]:=Sum[q[n-m-r, m-1-r], {r, 1, m-2}] a[n_, m_]:=0/; n<=1||m<=0 a[n_, m_]:=a[n, m]=Sum[(k-m)p[n-m, k], {k, m+1, n-m}]+ab[n, m, b]+2ab[n, m, c]+Sum[(r-1)c[n-m-r, m+1-r], {r, 2, m}] b[1, 1]=1; b[n_, m_]:=0/; n<=1||m<=0 b[n_, m_]:=b[n, m]=2Sum[p[n-m, k], {k, m, n-m}]+bb[n, m, b]+2bb[n, m, c]+2Sum[(r-1)c[n-m-r, m-r], {r, 2, m-1}] c[n_, m_]:=0/; n<=1||m<=0 c[n_, m_]:=c[n, m]=p[n-m, m-1]+cb[n, m, b]+2cb[n, m, c]+Sum[(r-1)c[n-m-r, m-1-r], {r, 2, m-2}] p[n_, m_]:=a[n, m]+b[n, m]+c[n, m] Table[Sum[p[n, m], {m, (n+1)/2}], {n, 20}] CROSSREFS Cf. A001168 (fixed polyominoes), A001169 (row-convex polyominoes). Sequence in context: A204200 A318127 A001169 * A022041 A018906 A014010 Adjacent sequences:  A187273 A187274 A187275 * A187277 A187278 A187279 KEYWORD nonn AUTHOR David Bevan, Mar 07 2011 EXTENSIONS Typo in example corrected by David Bevan, Mar 23 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 23:44 EDT 2019. Contains 328244 sequences. (Running on oeis4.)