login
Number of partitions of n that do not contain parts less than the smallest part of the partitions of n-1.
64

%I #63 Feb 17 2023 09:28:42

%S 1,1,1,2,2,4,4,7,8,12,14,21,24,34,41,55,66,88,105,137,165,210,253,320,

%T 383,478,574,708,847,1039,1238,1507,1794,2167,2573,3094,3660,4378,

%U 5170,6153,7245,8591,10087,11914,13959,16424,19196,22519,26252,30701,35717

%N Number of partitions of n that do not contain parts less than the smallest part of the partitions of n-1.

%C Essentially the same as A002865, but here a(1) = 1 not 0.

%C Also number of regions in the last section of the set of partitions of n.

%C Also number of partitions of n+k that are formed by k+1 sections, k >= 0 (Cf. A194799). - _Omar E. Pol_, Jan 30 2012

%C For the definition of region see A206437. - _Omar E. Pol_, Aug 13 2013

%C Partial sums give A000041, n >= 1. - _Omar E. Pol_, Sep 04 2013

%C Also the number of partitions of n with no parts greater than the number of ones. - _Spencer Miller_, Jan 28 2023

%H Paolo Xausa, <a href="/A187219/b187219.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Vincenzo Librandi)

%H Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpar02.jpg">Illustration of the seven regions of 5</a>

%F a(n) = A083751(n) + 1. - _Omar E. Pol_, Mar 04 2012

%F a(n) = A002865(n), if n >= 2. - _Omar E. Pol_, Aug 13 2013

%e From _Omar E. Pol_, Aug 13 2013: (Start)

%e Illustration of initial terms as number of regions:

%e . _ _ _ _ _ _

%e . |_ _ _ |

%e . |_ _ _|_ |

%e . |_ _ | |

%e . _ _ _ _ _ |_ _|_ _|_ |

%e . |_ _ _ | | |

%e . _ _ _ _ |_ _ _|_ | | |

%e . |_ _ | | | | |

%e . _ _ _ |_ _|_ | | | | |

%e . _ _ |_ _ | | | | | | |

%e . _ |_ | | | | | | | | |

%e . |_| |_| |_| |_| |_| |_|

%e .

%e . 1 1 1 2 2 4

%e .

%e (End)

%t Join[{1}, Drop[CoefficientList[Series[1 / Product[(1 - x^k)^1, {k, 2, 50}], {x, 0, 50}], x], 2]] (* _Vincenzo Librandi_, Feb 15 2018 *)

%t A187219[nmax_]:=Join[{1},Differences[PartitionsP[Range[nmax]]]];

%t A187219[100] (* _Paolo Xausa_, Feb 17 2023 *)

%Y Cf. A000041, A002865, A083751, A135010, A186114, A193870, A206437, A225600, A225610.

%K nonn

%O 1,4

%A _Omar E. Pol_, Dec 09 2011

%E Better definition from _Omar E. Pol_, Sep 04 2013