login
a(n) = 6*(24*n - 1).
4

%I #26 Sep 08 2022 08:45:56

%S 138,282,426,570,714,858,1002,1146,1290,1434,1578,1722,1866,2010,2154,

%T 2298,2442,2586,2730,2874,3018,3162,3306,3450,3594,3738,3882,4026,

%U 4170,4314,4458,4602,4746,4890,5034,5178,5322,5466,5610,5754,5898

%N a(n) = 6*(24*n - 1).

%C The expression 6*(24*n - 1) is mentioned in the Bruinier-Ono paper (see theorem 1.1 and chapter 5).

%H Vincenzo Librandi, <a href="/A187206/b187206.txt">Table of n, a(n) for n = 1..10000</a>

%H J. H. Bruinier and K. Ono, <a href="http://www.aimath.org/news/partition/brunier-ono.pdf">Algebraic formulas for the coefficients of half-integral weight harmonic weak Maass forms</a>

%H E. Larson and L. Rolen, <a href="http://arxiv.org/abs/1107.4114">Integrality properties of the CM-values of certain weak Maass forms</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).

%F a(n) = 6*A183010(n).

%t 144*Range[40]-6 (* _Harvey P. Dale_, Jul 20 2011 *)

%o (Magma) [6*(24*n - 1): n in [1..45]]; // _Vincenzo Librandi_, Jul 12 2011

%o (PARI) a(n)=144*n-6 \\ _Charles R Greathouse IV_, Nov 03 2011

%Y Cf. A000041, A183009, A183010, A183011.

%K nonn,easy

%O 1,1

%A _Omar E. Pol_, Jul 09 2011