This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A187153 Expansion of q * (psi(q) / psi(q^2)) / (psi(q^3) / psi(q^6))^3 in powers of q where psi() is a Ramanujan theta function. 5
 1, 1, -1, -3, -2, 3, 8, 5, -7, -18, -12, 15, 38, 24, -30, -75, -46, 57, 140, 86, -104, -252, -152, 183, 439, 262, -313, -744, -442, 522, 1232, 725, -852, -1998, -1168, 1365, 3182, 1852, -2150, -4986, -2886, 3336, 7700, 4436, -5106, -11736, -6736, 7719 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of (eta(q^2) * eta(q^3) * eta(q^12)^2)^3 / (eta(q) * eta(q^4)^2 * eta(q^6)^9) in powers of q. Euler transform of period 12 sequence [ 1, -2, -2, 0, 1, 4, 1, 0, -2, -2, 1, 0, ...]. Expansion of c(q) * c(q^4)^2 / c(q^2)^3 in powers of q where c() is a cubic AGM theta function. If p = 2 * A(q), then B(q) = p * ((2 + p) / (1 + 2*p))^3 and B(q^3) = p^3 * ((2 + p) / (1 + 2*p)) where B() is the g.f. for A115977. - Michael Somos, Feb 27 2012 G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u * (1 + 2*v))^2 - v * (1 + 2*u). G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u^2 * (1 + 4*v) * (3*v + u*(1 + 4*v)) - v * (1 + v) * (3*u + 1 + v). Convolution inverse of A187143. EXAMPLE G.f. = q + q^2 - q^3 - 3*q^4 - 2*q^5 + 3*q^6 + 8*q^7 + 5*q^8 - 7*q^9 - 18*q^10 + ... MATHEMATICA QP = QPochhammer; s = (QP[q^2]*QP[q^3]*QP[q^12]^2)^3/(QP[q]*QP[q^4]^2* QP[q^6]^9) + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 14 2015, adapted from PARI *) QP = QPochhammer; Rest[Table[SeriesCoefficient[q*(QP[-q, q^2]*QP[-q^6, q^6]^3)/(QP[-q^2, q^2]*QP[-q^3, q^6]^3), {q, 0, n}], {n, 0, 50}]] (* G. C. Greubel, Dec 04 2017 *) PROG (PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A)^2)^3 / (eta(x + A) * eta(x^4 + A)^2 * eta(x^6 + A)^9), n))} CROSSREFS Cf. A187143. Sequence in context: A070982 A275520 * A213265 A123649 A080848 A016602 Adjacent sequences:  A187150 A187151 A187152 * A187154 A187155 A187156 KEYWORD sign,changed AUTHOR Michael Somos, Mar 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.