This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A187096 Coefficients of L-series for elliptic curve "19a3": y^2 + y = x^3 + x^2 + x. 1
 1, 0, -2, -2, 3, 0, -1, 0, 1, 0, 3, 4, -4, 0, -6, 4, -3, 0, 1, -6, 2, 0, 0, 0, 4, 0, 4, 2, 6, 0, -4, 0, -6, 0, -3, -2, 2, 0, 8, 0, -6, 0, -1, -6, 3, 0, -3, -8, -6, 0, 6, 8, 12, 0, 9, 0, -2, 0, -6, 12, -1, 0, -1, -8, -12, 0, -4, 6, 0, 0, 6, 0, -7, 0, -8, -2, -3, 0, 8, 12, -11, 0, 12, -4, -9, 0, -12, 0, 12, 0, 4, 0, 8, 0, 3, 0, 8, 0, 3, -8, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q * (psi(q^4) * phi(q^38) - q^2 * psi(q) * psi(q^19) + q^9 * phi(q^2) * psi(q^76))^2 in powers of q where phi(), psi() are Ramanujan theta functions. a(n) is multiplicative with a(19^e) = 1, a(p^e) = a(p) * a(p^(e-1)) - p * a(p^(e-2)) where a(p) = p+1 minus number of points of elliptic curve modulo p including point at infinity. G.f. is a period 1 Fourier series which satisfies f(-1 / (19 t)) = 19 (t/i)^2 f(t) where q = exp(2 pi i t). Convolution square of A187097. EXAMPLE q - 2*q^3 - 2*q^4 + 3*q^5 - q^7 + q^9 + 3*q^11 + 4*q^12 - 4*q^13 + ... If p = 2, then the solutions to y^2 + y = x^3 + x^2 + x modulo 2 are (0,0), (0,1) and the point at infinity. Thus a(2) = 2+1-3 = 0. PROG (PARI) {a(n) = if( n<1, 0, ellak( ellinit([ 0, 1, 1, 1, 0], 1), n))} (PARI) {a(n) = local( phi1, psi1); if( n<1, 0, n--; phi1 = 1 + 2 * sum( k=1, sqrtint( n), x^k^2, x * O(x^n)); psi1 = sum( k=1, ( sqrtint( 8*n + 1) + 1 ) \ 2, x^((k^2 - k)/2), x * O(x^n)); polcoeff( sqr( subst( psi1 + x * O(x^(n \ 4)), x, x^4) * subst( phi1 + x * O(x^(n \ 38)), x, x^38) - x^2 * psi1 * subst( psi1 + x * O(x^(n \ 19)), x, x^19) + x^9 * subst( phi1 + x * O(x^(n \ 2)), x, x^2) * subst( psi1 + x * O(x^(n \ 76)), x, x^76)), n))} (SAGE) CuspForms( Gamma0(19), 2, prec=100). 0 # Michael Somos, May 28 2013 CROSSREFS Cf. A187097. Sequence in context: A186069 A079243 A073438 * A160115 A139365 A071479 Adjacent sequences:  A187093 A187094 A187095 * A187097 A187098 A187099 KEYWORD sign,mult AUTHOR Michael Somos, Mar 04 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .