login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187021 Coefficient of x^n in (1+(n+1)*x+n*x^2)^n. 9

%I

%S 1,2,13,136,1921,33876,712909,17383584,481003009,14869654300,

%T 507406003501,18928740714192,765897591633409,33392080668673832,

%U 1559976990077534253,77717020110946293376,4111810085670587224065,230190619432401207833004,13591965974806603671569101

%N Coefficient of x^n in (1+(n+1)*x+n*x^2)^n.

%H Seiichi Manyama, <a href="/A187021/b187021.txt">Table of n, a(n) for n = 0..381</a> (terms 0..100 from Vincenzo Librandi)

%H Paul Barry and Aoife Hennessy, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Barry2/barry190r.html">Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths</a>, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. - _N. J. A. Sloane_, Oct 08 2012

%F a(n) = [x^n] (1+(n+1)*x+n*x^2)^n.

%F a(n) = n^(n/2)*GegenbauerPoly(n,-n,-(n+1)/(2*sqrt(n)). - _Emanuele Munarini_, Oct 20 2016

%F a(n) = Sum_{k=0..n} binomial(n,k)^2 * n^k. - _Paul D. Hanna_, Mar 29 2011

%F a(n) ~ n^(n-1/4) * exp(2*sqrt(n)-1) / (2*sqrt(Pi)). - _Vaclav Kotesovec_, Apr 17 2014

%t Flatten[{1,Table[Sum[Binomial[n,k]^2*n^k,{k,0,n}],{n,1,20}]}] (* _Vaclav Kotesovec_, Apr 17 2014 *)

%t Table[If[n == 0, 1, Simplify[n^(n/2) GegenbauerC[n, -n, -(n + 1)/(2 Sqrt[n])]]], {n, 0, 100}] (* _Emanuele Munarini_, Oct 20 2016 *)

%o (PARI) {a(n)=sum(k=0,n,binomial(n,k)^2*n^k)} \\ _Paul D. Hanna_, Mar 29 2011

%o (Maxima) a(n):=coeff(expand((1+(n+1)*x+n*x^2)^n),x,n);

%o makelist(a(n),n,0,12);

%o (MAGMA) P<x>:=PolynomialRing(Integers()); [ Coefficients((1+(n+1)*x+n*x^2)^n)[n+1]: n in [0..22] ]; // _Klaus Brockhaus_, Mar 03 2011

%Y Main diagonal of A307883.

%Y Cf. A092366, A186925, A187018, A187019, A241247, A234971.

%K nonn

%O 0,2

%A _Emanuele Munarini_, Mar 02 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 22 00:32 EST 2019. Contains 329383 sequences. (Running on oeis4.)