login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187021 Coefficient of x^n in (1+(n+1)*x+n*x^2)^n. 7
1, 2, 13, 136, 1921, 33876, 712909, 17383584, 481003009, 14869654300, 507406003501, 18928740714192, 765897591633409, 33392080668673832, 1559976990077534253, 77717020110946293376, 4111810085670587224065 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8.- From N. J. A. Sloane, Oct 08 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..100

FORMULA

a(n) = [x^n](1+(n+1)*x+n*x^2)^n.

a(n) = n^(n/2)*GegenbauerPoly(n,-n,-(n+1)/(2*sqrt(n)). - Emanuele Munarini, Oct 20 2016

a(n) = Sum_{k=0..n} binomial(n,k)^2 * n^k. - Paul D. Hanna, Mar 29 2011

a(n) ~ n^(n-1/4) * exp(2*sqrt(n)-1) / (2*sqrt(Pi)). - Vaclav Kotesovec, Apr 17 2014

MATHEMATICA

Flatten[{1, Table[Sum[Binomial[n, k]^2*n^k, {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Apr 17 2014 *)

Table[If[n == 0, 1, Simplify[n^(n/2) GegenbauerC[n, -n, -(n + 1)/(2 Sqrt[n])]]], {n, 0, 100}] (* Emanuele Munarini, Oct 20 2016 *)

PROG

(PARI) {a(n)=sum(k=0, n, binomial(n, k)^2*n^k)} [Paul D. Hanna, Mar 29 2011]

(Maxima) a(n):=coeff(expand((1+(n+1)*x+n*x^2)^n), x, n);

makelist(a(n), n, 0, 12);

(MAGMA) P<x>:=PolynomialRing(Integers()); [ Coefficients((1+(n+1)*x+n*x^2)^n)[n+1]: n in [0..22] ]; // Klaus Brockhaus, Mar 03 2011

CROSSREFS

Cf. A092366, A186925, A187018, A187019, A241247, A234971.

Sequence in context: A047856 A246875 A242004 * A152059 A132063 A143137

Adjacent sequences:  A187018 A187019 A187020 * A187022 A187023 A187024

KEYWORD

nonn

AUTHOR

Emanuele Munarini, Mar 02 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 13:07 EST 2016. Contains 278875 sequences.