login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187021 Coefficient of x^n in (1+(n+1)*x+n*x^2)^n. 7
1, 2, 13, 136, 1921, 33876, 712909, 17383584, 481003009, 14869654300, 507406003501, 18928740714192, 765897591633409, 33392080668673832, 1559976990077534253, 77717020110946293376, 4111810085670587224065 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8.- From N. J. A. Sloane, Oct 08 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..100

FORMULA

a(n) = [x^n](1+(n+1)*x+n*x^2)^n.

a(n) = Sum_{k=0..n} binomial(n,k)^2 * n^k. - Paul D. Hanna, Mar 29 2011

a(n) ~ n^(n-1/4) * exp(2*sqrt(n)-1) / (2*sqrt(Pi)). - Vaclav Kotesovec, Apr 17 2014

MATHEMATICA

Flatten[{1, Table[Sum[Binomial[n, k]^2*n^k, {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Apr 17 2014 *)

PROG

(PARI) {a(n)=sum(k=0, n, binomial(n, k)^2*n^k)} [Paul D. Hanna, Mar 29 2011]

(Maxima) a(n):=coeff(expand((1+(n+1)*x+n*x^2)^n), x, n);

makelist(a(n), n, 0, 12);

(MAGMA) P<x>:=PolynomialRing(Integers()); [ Coefficients((1+(n+1)*x+n*x^2)^n)[n+1]: n in [0..22] ]; // Klaus Brockhaus, Mar 03 2011

CROSSREFS

Cf. A092366, A186925, A187018, A187019, A241247, A234971.

Sequence in context: A065132 A047856 A242004 * A152059 A132063 A143137

Adjacent sequences:  A187018 A187019 A187020 * A187022 A187023 A187024

KEYWORD

nonn,easy

AUTHOR

Emanuele Munarini, Mar 02 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 29 06:14 EDT 2014. Contains 246187 sequences.