login
A187003
Expansion of 1/(1-x-2*x^2-3*x^3-3*x^4-2*x^5-x^6).
1
1, 1, 3, 8, 20, 50, 126, 317, 798, 2008, 5053, 12716, 32000, 80528, 202649, 509967, 1283334, 3229515, 8127087, 20451846, 51467150, 129517283, 325930746, 820205989, 2064051559, 5194193770, 13071208809, 32893747768, 82777244097, 208309256477, 524211053501
OFFSET
0,3
LINKS
Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
FORMULA
a(n):=sum(m=1..n, sum(k=m..n, binomial(m,k-m)*sum(j=0..k, binomial(k,j)*binomial(j,n-3*k+2*j)))), a(0)=1.
MAPLE
seq(coeff(series(1/(1-x-2*x^2-3*x^3-3*x^4-2*x^5-x^6), x, n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Feb 24 2019
MATHEMATICA
CoefficientList[Series[1/(1-x-2x^2-3x^3-3x^4-2x^5-x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[ {1, 2, 3, 3, 2, 1}, {1, 1, 3, 8, 20, 50}, 40] (* Harvey P. Dale, Jul 21 2024 *)
PROG
(Maxima) a(n):=sum(sum(binomial(m, k-m)*sum(binomial(k, j)*binomial(j, n-3*k+2*j), j, 0, k), k, m, n), m, 1, n)
(PARI) Vec(1/(1-x-2*x^2-3*x^3-3*x^4-2*x^5-x^6)+O(x^44)) \\ Joerg Arndt, Mar 04 2011
CROSSREFS
Sequence in context: A078053 A122595 A026582 * A101893 A140662 A174198
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Mar 01 2011
STATUS
approved