login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A186925 Coefficient of x^n in (1+n*x+x^2)^n. 14

%I

%S 1,1,6,45,454,5775,88796,1602447,33213510,777665691,20302315252,

%T 584774029983,18422140045596,630132567760345,23257790717110392,

%U 921362075184792825,38994274473840538182,1755943506127367745795,83829045032101462204100,4229207755493569286374167

%N Coefficient of x^n in (1+n*x+x^2)^n.

%H Seiichi Manyama, <a href="/A186925/b186925.txt">Table of n, a(n) for n = 0..386</a> (terms 0..100 from Vincenzo Librandi)

%F a(n) = [x^n] (1+n*x+x^2)^n.

%F a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, n-2*k)*n^(n-2*k).

%F a(n) ~ BesselI(0,2) * n^n. - _Vaclav Kotesovec_, Apr 17 2014

%F a(n) = GegenbauerPoly(n,-n,-n/2). - _Emanuele Munarini_, Oct 20 2016

%F From _Ilya Gutkovskiy_, Sep 20 2017: (Start)

%F a(n) = [x^n] 1/sqrt((1 + 2*x - n*x)*(1 - 2*x - n*x)).

%F a(n) = n! * [x^n] exp(n*x)*BesselI(0,2*x). (End)

%F From _Seiichi Manyama_, May 01 2019: (Start)

%F a(n) = Sum_{k=0..n} (n-2)^(n-k) * binomial(n,k) * binomial(2*k,k).

%F a(n) = Sum_{k=0..n} (n+2)^(n-k) * (-1)^k * binomial(n,k) * binomial(2*k,k). (End)

%t Flatten[{1,Table[Sum[Binomial[n, k]*Binomial[n-k, n-2*k]*n^(n-2*k), {k,0,Floor[n/2]}],{n,1,20}]}] (* _Vaclav Kotesovec_, Apr 17 2014 *)

%t Table[GegenbauerC[n, -n, -n/2] + KroneckerDelta[n, 0], {n, 0, 100}] (* _Emanuele Munarini_, Oct 20 2016 *)

%o (Maxima) a(n):=coeff(expand((1+n*x+x^2)^n),x,n);

%o (Maxima) makelist(ultraspherical(n,-n,-n/2),n,0,12); /* _Emanuele Munarini_, Oct 20 2016 */

%o makelist(a(n),n,0,20);

%o (MAGMA) P<x>:=PolynomialRing(Integers()); [ Coefficients((1+n*x+x^2)^n)[n+1]: n in [0..22] ]; // _Klaus Brockhaus_, Mar 02 2011

%o (PARI) {a(n) = sum(k=0, n, (n-2)^(n-k)*binomial(n, k)*binomial(2*k, k))} \\ _Seiichi Manyama_, May 01 2019

%o (PARI) a(n) = polcoef((1+n*x+x^2)^n, n); \\ _Michel Marcus_, May 01 2019

%Y Main diagonal of A292627.

%Y Cf. A092366, A187018, A187019, A187021, A070910, A292629.

%K nonn,easy

%O 0,3

%A _Emanuele Munarini_, Mar 02 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 13 23:47 EDT 2019. Contains 327983 sequences. (Running on oeis4.)