login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A186885 Numbers n whose squares are the average of two distinct positive cubes. 1
6, 42, 48, 78, 147, 162, 196, 336, 384, 456, 624, 722, 750, 1050, 1134, 1176, 1296, 1342, 1568, 1573, 1674, 1694, 2028, 2058, 2106, 2366, 2387, 2450, 2522, 2646, 2688, 2899, 3072, 3087, 3211, 3648, 3698, 3969, 4374, 4992, 5250, 5292, 5550, 5776, 5915, 6000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Trivially, if n is here also 1000n is, e.g., both 6 and

6000 are here. Also, no prime numbers here.

In the table, 396 triples {n,a,b} are given for all n's up to 5*10^5.

LINKS

Table of n, a(n) for n=1..46.

Zak Seidov, Triples {n,a,b} for n's up to 5*10^5

FORMULA

n^2 is average of two cubes:  n^2 = (a^3+b^3)/2, 0<a<b.

EXAMPLE

6^2 = (2^3+4^3)/2, 42^2 = (11^3+13^3)/2, 147^2 = (7^3+35^3)/2.

MATHEMATICA

nn = 13552; lim = Floor[(2 nn^2)^(1/3)]; Sort[Reap[Do[num = (a^3 + b^3)/2; If[IntegerQ[num] && num <= nn^2 && IntegerQ[Sqrt[num]], Sow[Sqrt[num]]], {a, lim}, {b, a - 1}]][[2, 1]]]

CROSSREFS

Sequence in context: A250387 A117693 A153243 * A097253 A083938 A176308

Adjacent sequences:  A186882 A186883 A186884 * A186886 A186887 A186888

KEYWORD

nonn

AUTHOR

Zak Seidov, Feb 28 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 04:09 EST 2016. Contains 278993 sequences.