|
|
A186884
|
|
Numbers n such that 2^(n-1) = 1 + b*n (mod n^2), where b divides n-2^p for some integer p>=0 and 2^p<=b.
|
|
0
|
|
|
3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 71, 127, 173, 199, 233, 251, 257, 379, 491, 613, 881, 2047, 2633, 2659, 3457, 3373, 5501, 5683, 8191, 11497, 13249, 15823, 16879, 18839, 22669, 24763, 25037, 26893, 30139, 45337, 48473, 56671, 58921, 65537, 70687, 74531, 74597, 77023, 79669, 87211, 92237, 102407, 131071, 133493, 181421, 184511, 237379, 250583, 254491, 281381
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
|
|