OFFSET
0,1
COMMENTS
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
Michael Somos, Introduction to Ramanujan theta functions, 2019.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Euler transform of period 24 sequence [1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, ...].
G.f.: Sum_{k in Z} x^(6*k^2 - 5*k) = Product_{k>0} (1 + x^(12*k - 11)) * (1 + x^(12*k - 1)) * (1 - x^(12*k)).
Expansion of (f(x, x^2) - f(-x, -x^2)) / (2*x) in powers of x. - Michael Somos, Aug 28 2017
Sum_{k=1..n} a(k) ~ sqrt(2*n/3). - Amiram Eldar, Jan 13 2024
EXAMPLE
G.f. = 1 + x + x^11 + x^14 + x^34 + x^39 + x^69 + x^76 + x^116 + x^125 + ...
G.f. = q^25 + q^49 + q^289 + q^361 + q^841 + q^961 + q^1681 + q^1849 + ...
MATHEMATICA
a[ n_] := With[{m = Sqrt[24 n + 25]}, If[ n >= 0 && IntegerQ @ m, Boole[ Mod[m, 12] == 5 || Mod[m, 12] == 7], 0]]; (* Michael Somos, Aug 28 2017 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x^12] QPochhammer[ -x^1, x^12] QPochhammer[ -x^11, x^12], {x, 0, n}]; (* Michael Somos, Aug 28 2017 *)
PROG
(PARI) {a(n) = my(m); n++; if( !issquare( 24*n + 1, &m), 0, m%12 == 5 || m%12 == 7)};
(PARI) {a(n) = my(A); n = 3*n + 3; if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / eta(x + A) - eta(x^3 + A) - x * eta(x^18 + A)^2 / eta(x^9 + A)) / 2, n))}; /* Michael Somos, Aug 28 2017 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 21 2012
STATUS
approved