The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A186707 Partial sums of A007202 (crystal ball sequence for hexagonal close-packing). 3
 1, 14, 71, 224, 547, 1134, 2101, 3584, 5741, 8750, 12811, 18144, 24991, 33614, 44297, 57344, 73081, 91854, 114031, 140000, 170171, 204974, 244861, 290304, 341797, 399854, 465011, 537824, 618871, 708750, 808081, 917504, 1037681, 1169294, 1313047, 1469664 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Subsequence of primes begins 71, 547, 5741, 114031, 244861, 465011, 808081, 1037681. Subsequence of powers includes 537824 = 2^5 * 7^5. The sequence is a quasipolynomial, so under the Bunyakovsky conjecture there are infinitely many primes in this sequence. - Charles R Greathouse IV, Aug 21 2011 Let s(0) = 0 and s(n) = A186707(n-1) for n > 0. Then s(n) is the number of 4-tuples (w,x,y,z) having all terms in {1, ..., n} and |w - x| < w + |y - z|. - Clark Kimberling, May 24 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 Index entries for linear recurrences with constant coefficients, signature (4,-5,0,5,-4,1). FORMULA From R. J. Mathar, Mar 24 2011: (Start) a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) = 7*n*(n^3/8 + n^2/2 + 3*n/4 + 1/2) + (15 + (-1)^n)/16. G.f.: ( -1 - 10*x - 20*x^2 - 10*x^3 - x^4 ) / ( (1 + x)*(x - 1)^5 ). (End) E.g.f.: (cosh(x) + 7*exp(x)*(1 + 15*x + 25*x^2 + 10*x^3 + x^4))/8. - Franck Maminirina Ramaharo, Nov 09 2018 MATHEMATICA CoefficientList[Series[ (-1-10 x-20 x^2-10 x^3-x^4)/((x-1)^5 (1+x)), {x, 0, 40}], x] (* Harvey P. Dale, Apr 04 2011 *) Table[7*n*(n^3 + 4*n^2 + 6*n + 4)/8 + (15 + (-1)^n)/16, {n, 0, 40}] (* T. D. Noe, Apr 04 2011 *) PROG (PARI) a(n)=7*n*(n^3+4*n^2+6*n+4)/8+(15+(-1)^n)/16 \\ Charles R Greathouse IV, Aug 21 2011 (Magma)[7*n*(n^3+4*n^2+6*n+4)/8+(15+(-1)^n)/16: n in [0..40] ]; // Vincenzo Librandi, Aug 22 2011 CROSSREFS Cf. A007202. Sequence in context: A245951 A352869 A212572 * A212752 A074086 A205335 Adjacent sequences: A186704 A186705 A186706 * A186708 A186709 A186710 KEYWORD nonn,easy,less AUTHOR Jonathan Vos Post, Feb 25 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 02:30 EST 2022. Contains 358572 sequences. (Running on oeis4.)