|
|
A186704
|
|
The minimum number of distinct distances determined by n points in the Euclidean plane.
|
|
1
|
|
|
0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
The Mathoverflow link has an image from page 200 of Brass reference.
|
|
REFERENCES
|
P. Brass, W. O. J. Moser and J. Pach, Research Problems in Discrete Geometry, Springer (2005), p. 200.
|
|
LINKS
|
Table of n, a(n) for n=1..13.
P. Erdős and P. Fishburn, Maximum planar sets that determine k distances, Discrete Math. 160 (1996), 115-125.
L. Guth, N. H. Katz, On the Erdős distinct distance problem in the plane, arXiv:1011.4105 [math.CO], 2010-2011.
R. Mansuy, Le problème des distances d'Erdős, Mathematik Park, Institut Henri Poincaré, Paris, 2013.
Mathoverflow, Erdos distance problem n=12
K. Schade, Softwarepraktikum, Sommersemester 2007
|
|
EXAMPLE
|
a(4) = a(5) = 2 from the 2 distinct distances between vertices of a square and a regular pentagon.
|
|
CROSSREFS
|
Sequence in context: A225559 A082479 A090616 * A067434 A336348 A177357
Adjacent sequences: A186701 A186702 A186703 * A186705 A186706 A186707
|
|
KEYWORD
|
nonn,hard,nice
|
|
AUTHOR
|
Michael Somos, Feb 25 2011
|
|
STATUS
|
approved
|
|
|
|