login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A186704 The minimum number of distinct distances determined by n points in the Euclidean plane. 1
0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

The Mathoverflow link has an image from page 200 of Brass reference.

REFERENCES

P. Brass, W. O. J. Moser and J. Pach, Research Problems in Discrete Geometry, Springer (2005), p. 200.

LINKS

Table of n, a(n) for n=1..13.

P. Erdős and P. Fishburn, Maximum planar sets that determine k distances, Discrete Math. 160 (1996), 115-125.

L. Guth, N. H. Katz, On the Erdős distinct distance problem in the plane, arXiv:1011.4105 [math.CO], 2010-2011.

R. Mansuy, Le problème des distances d'Erdős, Mathematik Park, Institut Henri Poincaré, Paris, 2013.

Mathoverflow, Erdos distance problem n=12

K. Schade, Softwarepraktikum, Sommersemester 2007

EXAMPLE

a(4) = a(5) = 2 from the 2 distinct distances between vertices of a square and a regular pentagon.

CROSSREFS

Sequence in context: A225559 A082479 A090616 * A067434 A336348 A177357

Adjacent sequences:  A186701 A186702 A186703 * A186705 A186706 A186707

KEYWORD

nonn,hard,nice

AUTHOR

Michael Somos, Feb 25 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 13 17:30 EDT 2021. Contains 342936 sequences. (Running on oeis4.)