

A186704


The minimum number of distinct distances determined by n points in the Euclidean plane.


1



0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

The Mathoverflow link has an image from page 200 of Brass reference.


REFERENCES

P. Brass, W. O. J. Moser and J. Pach, Research Problems in Discrete Geometry, Springer (2005), p. 200.
Paul Erdős and Peter Fishburn, Maximum planar sets that determine k distances, Discrete Math. 160:13 (1996), pp. 115125.


LINKS

Table of n, a(n) for n=1..13.
L. Guth, N. H. Katz, On the Erdős distinct distance problem in the plane, arXiv:1011.4105 [math.CO]
R. Mansuy, Le problème des distances d'Erdős, Mathematik Park, Institut Henri Poincaré, Paris, 2013.
Mathoverflow, Erdos distance problem n=12
K. Schade, Softwarepraktikum, Sommersemester 2007


EXAMPLE

a(4) = a(5) = 2 from the 2 distinct distances between vertices of a square and a regular pentagon.


CROSSREFS

Sequence in context: A225559 A082479 A090616 * A067434 A177357 A165906
Adjacent sequences: A186701 A186702 A186703 * A186705 A186706 A186707


KEYWORD

nonn,hard,nice


AUTHOR

Michael Somos, Feb 25 2011


STATUS

approved



