The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A186698 Next prime after n-th palindrome. 2
 2, 3, 5, 5, 7, 7, 11, 11, 11, 13, 23, 37, 47, 59, 67, 79, 89, 101, 103, 113, 127, 137, 149, 157, 163, 173, 191, 193, 211, 223, 223, 233, 251, 257, 263, 277, 283, 293, 307, 317, 331, 337, 347, 359, 367, 379, 389, 397, 409, 419, 431, 439, 449, 457, 467, 479, 487, 499, 509, 521, 541, 541, 547, 557, 569, 577, 587, 599, 607, 617, 631, 641, 647 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS There are infinitely many n for which a(n+1) = a(n).  For example, when 10^k + 1 is composite, 10^k - 1 and 10^k + 1 are successive palindromes which have the same next prime. - Robert Israel, Nov 04 2015 LINKS Chai Wah Wu, Table of n, a(n) for n = 1..10000 MAPLE digrev:= proc(x) option remember; local t;    t:= x mod 10;    t*10^ilog10(x)+procname((x-t)/10) end proc: for x from 0 to 9 do digrev(x):= x od: N:=6; Pals:= \$1..9: for d from 2 to N do   if d::even then     m:= d/2;     Pals:= Pals, seq(n*10^m + digrev(n), n=10^(m-1)..10^m-1);   else     m:= (d-1)/2;     Pals:= Pals, seq(seq(n*10^(m+1)+y*10^m+digrev(n), y=0..9), n=10^(m-1)..10^m-1);   fi od: Pals:=[Pals]: map(nextprime, Pals); # Robert Israel, Nov 04 2015 CROSSREFS Cf. A014208, A186697. Sequence in context: A159477 A268101 A123318 * A234345 A111060 A082432 Adjacent sequences:  A186695 A186696 A186697 * A186699 A186700 A186701 KEYWORD nonn,base AUTHOR Harvey P. Dale, Feb 25 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 16:32 EDT 2021. Contains 343177 sequences. (Running on oeis4.)