This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A186690 Expansion of - (1/8) theta_3''(0, q) / theta_3(0, q) in powers of q. 22
 1, -2, 4, -4, 6, -8, 8, -8, 13, -12, 12, -16, 14, -16, 24, -16, 18, -26, 20, -24, 32, -24, 24, -32, 31, -28, 40, -32, 30, -48, 32, -32, 48, -36, 48, -52, 38, -40, 56, -48, 42, -64, 44, -48, 78, -48, 48, -64, 57, -62, 72, -56, 54, -80, 72, -64, 80, -60, 60, -96, 62, -64 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS If A(x) is the generating function then 1 / Pi = 8 A( exp( -Pi) ). [Plouffe, equation 1.2] Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). REFERENCES A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Equation (5.1.29.8). LINKS Seiichi Manyama, Table of n, a(n) for n = 1..10000 Simon Plouffe, Identities inspired by the Ramanujan Notebooks, Second series. Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Multiplicative with a(2^e) = -(2^e) if e>0, a(p^e) = (p^(e+1) - 1) / (p - 1) if p > 2. Expansion of (E - (1 - k^2) * K) * K / (2 Pi^2) in powers of the nome q where K, E are complete elliptic integrals. Expansion of (1/2) x (d phi(x) / dx) / phi(x) in powers of x where phi() is a Ramanujan theta function. G.f.: Sum_{k>0} - (-1)^k * k * x^k / (1 - x^(2*k)) = Sum_{k>0} x^(2*k-1) / (1 + x^(2*k-1))^2 = (Sum_{k>0} n^2 x^(n^2)) / (Sum_k x^(n^2)). Dirichlet g.f. zeta(s) *zeta(s-1) *(1-7*2^(-s)+14*4^(-s)-8^(1-s)) / (1-2^(1-s)). - R. J. Mathar, Jun 01 2011 a(n) = -(-1)^n * A002131(n). MOBIUS transform is A186111. - Michael Somos, Apr 25 2015 EXAMPLE G.f. = q - 2*q^2 + 4*q^3 - 4*q^4 + 6*q^5 - 8*q^6 + 8*q^7 - 8*q^8 + 13*q^9 + ... MATHEMATICA a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (1/8) (EllipticE[m] - (1 - m) EllipticK[m]) EllipticK[m]/(Pi/2)^2, {q, 0, n}]]; PROG (PARI) {a(n) = if( n<1, 0, -(-1)^n * sumdiv( n, d, d / gcd(d, 2)))}; CROSSREFS Cf. A002131, A186111. Sequence in context: A288772 A053196 A159634 * A002131 A230641 A063200 Adjacent sequences:  A186687 A186688 A186689 * A186691 A186692 A186693 KEYWORD sign,look,mult AUTHOR Michael Somos, Feb 25 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 18 20:06 EST 2018. Contains 318245 sequences. (Running on oeis4.)