login
A186440
Number of prime divisors (counted with multiplicity) of n such that the primitive irreducible trinomial x^n + x^k + 1 is a primitive irreducible polynomial (mod 2) for some k with 0 < k < n (A073726).
0
1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 3, 3, 2, 2, 1, 2, 3, 1, 1, 2, 2, 4, 2, 1, 1, 2, 3, 2, 2, 2, 4, 3, 2, 3, 1, 1, 1, 4, 4, 2, 1, 2, 2, 2, 1, 3, 4, 1, 3, 2, 5, 2, 1, 2, 2, 2, 2, 3, 1, 2, 3, 4, 2, 4, 1, 4, 2, 2, 3, 4, 1, 3, 2, 2, 1, 2, 3
OFFSET
1,3
LINKS
Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, Handbook of Applied Cryptography, CRC Press, ISBN: 0-8493-8523-7, October 1996, 816 pages, 5th printing, August 2001.
FORMULA
a(n) = bigomega(A073726(n)) = Omega(A073726(n)) = A001222(A073726(n)).
EXAMPLE
a(48) = 4 because A073726(48) = 100, and Omega(100 = 2^2 * 5^2) = 4.
CROSSREFS
Cf. A001222, A073726, See A074744 for corresponding values of k.
Sequence in context: A165413 A172155 A080573 * A006340 A270641 A076371
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Feb 21 2011
EXTENSIONS
a(49) - a(78) from Nathaniel Johnston, Apr 26 2011
STATUS
approved